A Study of Indoor Environment of Large Glazed Office Building in Semi Arid Climate

Mounira Badeche*
Department of architecture, Faculty of Earth Sciences and Architecture, Larbi Ben Mhidi University, Oum El Bouaghi 04000, Algeria
Department of Architecture and Urban Planning, University 3, Constantine 25000, Algeria

Yasmina Bouchahm
Department of Architecture and Urban Planning, University 3, Constantine 25000, Algeria

*Corresponding author: badeche_mn@yahoo.fr

In recent years the rate of buildings with large glazed facades is rapidly increasing, particularly in office buildings. Where, the creation of a suitable thermal and visual comfort is a significant factor affecting productivity. The use of large glazed facades without adapted shading measure generates thermal and visual discomfort, which ranges from uncomfortable environment conditions to serious health effects. Specialized work and literature about performance evaluation of large glazed office buildings in relation to their environment are lacking in semi arid climates, characterized by significant intensity of solar radiations in the summer period of the year. This study investigates the impact of large glazing areas on thermal and visual comfort in a sample of naturally ventilated office building located in the semi arid climate of Algeria (36°, 17 N and 7°, 23’ E). A Post Occupancy Evaluation technique (POE), being a mainstream activity in the process of building operation phase is used for this purpose. The main objective is to stress practitioners, specifically architects, to take conscious decisions in an early phase of design process. The study clearly highlighted discomfort in the studied office building. It included unacceptable temperature arising from glazed facade; overheating due to excessive solar gains; insufficient ventilation and poor daylighting. The results indicate that such large fenestration system is not recommended in summer time. However, a judicious choice of the glazing size and type by simulation tools must balance lighting and thermal needs.

Keywords: fenestration, indoor environment, post occupancy evaluation, thermal comfort, visual comfort.

Introduction

Human comfort and well-being are important in workplace. Many researchers have extensively investigated the relationship between the physical environment and other work variables, such as job satisfaction and performance. However, the creation of suitable microclimate in workplace largely depends on the process of building design, during which early-stage critical decisions are made (Tzempelikos and Athienitis Andreas 2007). For instance, architects are responsible for the creation of high-quality indoor environments to provide thermal and visual comfort to increase office workers productivity (Menzies and Wherrett 2005).

In recent years, research has identified the benefits of daylight and sunlight in buildings for occupants’ well-being and health, including necessity for the regulation of circadian rhythms (Stone 1999). In the workplace, windows are strongly required for outside view and daylight access (Jam-
rozik et al. 2019), which is essential for health and productivity (Chi et al. 2011). The design and selection of fenestration systems play a key role in achieving a suitable comfort level. Therefore, when designing a fenestration system, numerous physical aspects need to be considered, such as visual contact between interior and exterior, daylight use, solar energy gain, glare reduction, thermal loss and thermal comfort. According to (Manz and Urs-Peter 2012), highly glazed spaces can cause significant thermal energy gains or losses in buildings, which affect thermal comfort. In addition, occupants can be adversely affected by the presence of large hot or cold surfaces (Ochoa et al. 2012). In which, the thermal characteristics constitute the main technical and constructional criteria influencing a building’s microclimate (Isaksson and Karlsson 2006).

From the post-occupancy survey in four buildings, Menzies and Wherrett (2005) showed that a building with energy efficient windows could have high levels of comfort, when the building and the window design work together. Several studies on window energy performance and fenestration design have indicated that the window transparency is a mediator between thermal and visual performance (Laforgue et al. 1997). Conversely, optimizing window size for one purpose can hinder reaching another (Ochoa et al. 2012, Li 2008). An integrated thermal and natural light examination is therefore required, since these two parameters are interdependent (Tzempelikos and Athienitis Andreas 2007). Laforgue et al. (1997) evaluated the relationship between size, orientation and glazing properties of windows with space heating demand, daylighting and thermal environment. The authors established charts illustrating how combinations of design parameters with minimum space heating demand can be selected.

From the literature survey, it stood out that researchers mainly focused on one topic only; thermal or visual effect of window. However, the present study differs by analyzing the two aspects together, taking into consideration a geographical location insufficiently investigated. This study aims to analyze indoor environment problems arising in recently glazed-buildings, to inspire practitioners, especially architects, to take purposeful decisions in the earliest stage of architectural design of future buildings.

In all climate zones of Algeria, recently realized office buildings are largely glazed. The request of transparency for promoting aesthetics and visual comfort in office buildings may hide achieving suitable indoor conditions concern. Consequently, the use of large part of glass in the building envelope generates considerable problems, overheating, glare and energy loads.

A Post Occupancy Evaluation (POE) technique is used here. It is an inevitable step toward sustainability (Meir et al. 2009, Göçer et al. 2015). It is a general approach aimed at obtaining feedback about a building’s performance in use. POE methods employ a range of techniques which include, IEQ physical measurements, focus group meetings, structured interviews, visual records, occupant survey questionnaires, walkthroughs, and technical measurement of building structure, services and systems (Sanni-Anibire et al. 2016, Leaman et al. 2010). Based on a quantitative and qualitative analysis of 146 POE projects, Pexin et al. found that POE of office buildings are typically focused on occupants’ comfort and productivity. The more sophisticated of these utilize both a survey and physical measurements of indoor environment quality (IEQ) (Li et al. 2018). In this study the thermal and the visual comfort, which are the most important parameters of indoor environmental quality (IEQ) (Al horr 2016) are considered. Physical data is used here to compare a building’s IEQ performance against the norms.

The thermal comfort conditions analysis is based on thermal comfort requirements, to find out the design consequences of large glazing area on thermal conditions in such climate. Regarding daylighting conditions and visual comfort, the measurement of illuminance levels and spatial uniformity were used.

In situ measurements were conducted in the most recurrent and representative typology of office building facades in Algeria. A five story office building naturally ventilated is selected for a post-occupancy evaluation (Fig. 1). It is located in an urban site in Constantine city (36°, 17 N and 7°, 23’ E).
Four office rooms located in diverse orientations in the second floor of the building are selected for in situ measurements evaluation, in the hot period of the year. The situation of selected offices in an intermediate floor allows them a protection of distant or environmental masks. Examined orientations were Northeast (NE), Southeast (SE), southwest (SW) and Northeast and Southeast (the office room has 2 external walls). The Southeastern office room (SE) was the most furnished by thermal and lighting equipment, the reason for which it was the largely analyzed one, in this paper (Fig. 2 and 3).

Fig. 1
(a) Location of the OPGI building, (b) View of the building from the main street

Fig. 2
Plan and views of the four monitored spaces

Fig. 3
Detailed views of the glazed area of the building envelope
Description of the Monitored Building

The opaque part of the office building envelope is a double hollow brick cavity, while the fenestration system is a double pane glazing windows 5/12/5, with a window to wall ratio of 40%.

<table>
<thead>
<tr>
<th>Materials</th>
<th>Conductivity λ (W/m.K)</th>
<th>Specific heat capacity (J/kg.K)</th>
<th>Density (kg/m³)</th>
<th>Thickness (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metal cladding</td>
<td>210</td>
<td>880</td>
<td>2700</td>
<td>0.3</td>
</tr>
<tr>
<td>Cement-mortar</td>
<td>1.4</td>
<td>1080</td>
<td>2200</td>
<td>2</td>
</tr>
<tr>
<td>Hollow-Brick</td>
<td>0.70</td>
<td>936</td>
<td>960</td>
<td>15</td>
</tr>
<tr>
<td>Air</td>
<td>0.06</td>
<td>1274</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Hollow-Brick</td>
<td>0.70</td>
<td>936</td>
<td>960</td>
<td>10</td>
</tr>
<tr>
<td>Plaster-Mortar</td>
<td>0.35</td>
<td>1010</td>
<td>1800</td>
<td>2</td>
</tr>
</tbody>
</table>

Table 1
Main thermal properties of the opaque part of the building envelope

Table 2
The Main optical and thermal properties of the glazing used in the monitored building

<table>
<thead>
<tr>
<th>Energetic and Luminous Properties</th>
<th>Luminous Properties</th>
<th>Energy Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visible transmittance VT (%)</td>
<td>0.37</td>
<td>Solar heat gain coefficient (SHGC)</td>
</tr>
<tr>
<td>Light reflectance LR</td>
<td>0.33</td>
<td>Energy reflectance ER</td>
</tr>
<tr>
<td></td>
<td></td>
<td>UV Transmission</td>
</tr>
<tr>
<td></td>
<td></td>
<td>U-value (W/m².C°)</td>
</tr>
</tbody>
</table>

Climatic Conditions in Constantine

Constantine is an inland city of Algeria, located in 36°, 17 North latitude and 7°, 23’ East longitude. This location characterized by semi arid climate is classified as Csa by Köppen (2019). Its main feature is the considerable temperature variations, hot summer and very cold and wet winter (Fig. 4). The mean intensity of solar radiation is considerable, as it is about 4230 Wh/m²/day on a horizontal surface. While, the mean horizontal solar radiation value is 5.037 kWh/m²/day (N.O.M 2016).

![Monthly Temperatures (°C)](image_url)

Fig. 4. The monthly temperatures, in Constantine (N.O.M, 2016)
Thermal Comfort Measurement

Thermal comfort is defined by internationally standards as “a condition of mind which expresses satisfaction with the thermal environment.” There are several indices to assess the thermal comfort today. The most widely used is obtained by the PMV equation (Predicted Mean Vote) proposed by Fanger (1970).

The ASHRAE RP-884 standard of measurement procedures applied for indoor thermal comfort (Chyee Toe and kutoba2013) classifies the field data into three classes of expectation. In this study the measurements are linked to class II and class III. The Class II is applied for South Eastern (SE) office room measurements, according to EN 16798-2, 2014 (2014) guidelines. And the Class III protocol is applied in the other office rooms (Table 3). Human metabolic rates and insulation through clothing are classified as subjective factors. These two parameters are estimated in this study. A typical application of the measuring and analysis instrument, Delta ohm is used to relate the six factors of thermal comfort to a sensation scale which is the PMV index, broadly used for estimation of thermal comfort and applied in several standards, such as ANSI/ASHRAE standard 55, 17 (2017); ISO 7730-2005 (2005) and CIBSE Guide A, 2015 (2015). The Predicted Mean Vote (PMV) is calculated in compliance with the standard ISO 7730-2005. Subsequently, the Predicted Percentage of Dissatisfied (PPD) is obtained from the PMV index.

Continuous internal and external measurements were undertaken under representative weather conditions of the warm season, for approximately 5 consecutive days (03to 07 August, 2014); to cover one week of building occupation. Measurements were conducted according to the measurement protocol developed for commercial buildings by the American Society of Heating, refrigeration and air conditioning engineers (ANSI/ASHRAE Standard 55, 17 (2017)).

Measuring Equipment and Its Placement

Class II measuring:
The monitored Southeastern office room (SE) was instrumented as follows: Three instruments were placed at three positions in the space, to measure the interior ambient temperature and air humidity. The microclimate station Delta Ohm HD32.3 was used to measure several internal parameters: the mean radiant temperature, the relative humidity and the air speed (Table 4).

The objective measurement

<table>
<thead>
<tr>
<th>Measured parameters</th>
<th>Measured parameters</th>
<th>Calculated indices</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class II</td>
<td>Class III</td>
<td></td>
</tr>
<tr>
<td>Air temperature</td>
<td>Air temperature</td>
<td>Predicted Mean Vote (PMV)</td>
</tr>
<tr>
<td>Air relative humidity</td>
<td>Air relative humidity</td>
<td></td>
</tr>
<tr>
<td>Air velocity</td>
<td>X</td>
<td>Predicted Percentage of Dissatisfied (PPD)</td>
</tr>
<tr>
<td>Internal surface temperatures</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Mean radiant temperature</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Instruments</th>
<th>Measurement items</th>
<th>Measurement range</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orthelec KC6472</td>
<td>Temperature</td>
<td>-50°C to +70°C</td>
<td>±3.5%</td>
</tr>
<tr>
<td></td>
<td>Relative Humidity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data logger PCE-HT71</td>
<td>Temperature</td>
<td>-10 to +40°C</td>
<td>±1°C</td>
</tr>
<tr>
<td></td>
<td>Relative Humidity</td>
<td>20 to 80%</td>
<td>±3.5%</td>
</tr>
<tr>
<td>Weather Center Oregon WMR200</td>
<td>temperature humidity</td>
<td>-30°C to 60°C</td>
<td>±1°C</td>
</tr>
<tr>
<td></td>
<td>Air speed</td>
<td>25% to 90%</td>
<td>±5%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 – 56 m/s</td>
<td>±3 m/s</td>
</tr>
<tr>
<td>Delta ohm HD32.3</td>
<td>Temperature</td>
<td>-10 ÷ 80 °C</td>
<td>±1°C</td>
</tr>
<tr>
<td></td>
<td>Humidity</td>
<td>5% ÷ 98%</td>
<td>±2.5%</td>
</tr>
<tr>
<td></td>
<td>Air speed</td>
<td>0÷5 m/s</td>
<td>±0.05 m/s</td>
</tr>
<tr>
<td>Extech IR400</td>
<td>Surface temperature</td>
<td>-4 to 630°F</td>
<td>±2% of Reading</td>
</tr>
<tr>
<td>Photo-Radiometer HD2302</td>
<td>Illuminance</td>
<td>1.01 –199.99×10³</td>
<td>< 4%</td>
</tr>
</tbody>
</table>

Table 3
Measured thermal comfort parameters

Table 4
Measure instruments installed in the monitored building
The importance of daylight in buildings is nowadays of particular interest, in terms of visual comfort and well-being. The presence of light in interior spaces increases the human spirit while reduces eye and body fatigue (Nasrollahi and Shokry 2020). Visual comfort is evaluated by illuminance measurement on task areas. The horizontal illuminance at the desk level is used here to evaluate daylighting availability in the space, and the uniformity rate. Daylighting measurements are carried out without the presence of lighting, during a partly cloudy day, referring to standard (EN 16798-2 2014), using the Photo-Radiometer HD 2302 and an orthogonal grid of 15 measurement points covering the total office area. The used grid has regular intervals (1.5m) at 0.75m above the floor level. This value corresponds to the work plane (Fig. 6).

Building schedule
The building thermal and visual behaviour in real working conditions was analyzed. During the measuring period, employees occupied the office rooms from 8:00 to 16:30. The windows were fully opened to allow air entering during working hours. Blue curtains are used to protect spaces from solar radiation. Occupants kept them closed to protect themselves from UV rays, during all the measuring period, except at illuminance measurement time, whereby we opened them for few minutes and then close them once measurements are taken.

Class III measuring
The monitoring space was instrumented as follows: measurement of air temperature and relative humidity were undertaken at one measuring point, which is the center of the space. Office rooms considered here are those orientated to (NE), (NE/SE), and (SW).

Visual comfort measurements
The importance of daylight in buildings is nowadays of particular interest, in terms of visual comfort and well-being. The presence of light in interior spaces increases the human spirit while reduces eye and body fatigue (Nasrollahi and Shokry 2020). Visual comfort is evaluated by illuminance measurement on task areas. The horizontal illuminance at the desk level is used here to evaluate daylighting availability in the space, and the uniformity rate. Daylighting measurements are carried out without the presence of lighting, during a partly cloudy day, referring to standard (EN 16798-2 2014), using the Photo-Radiometer HD 2302 and an orthogonal grid of 15 measurement points covering the total office area. The used grid has regular intervals (1.5m) at 0.75m above the floor level. This value corresponds to the work plane (Fig. 6).

Building schedule
The building thermal and visual behaviour in real working conditions was analyzed. During the measuring period, employees occupied the office rooms from 8:00 to 16:30. The windows were fully opened to allow air entering during working hours. Blue curtains are used to protect spaces from solar radiation. Occupants kept them closed to protect themselves from UV rays, during all the measuring period, except at illuminance measurement time, whereby we opened them for few minutes and then close them once measurements are taken.
Air Temperature

From Fig. 7, we clearly notice that the temperature values (Ti1, Ti2 and Ti3), relating to the three measurement stations placed in the SE office room evolve in the same way and with a slight difference of the order of 0.25 °C, and have very high values, indicating a warm indoor environment. Internal environment was hot, since the mean internal temperature was 29.78°C. This is attested by thermal behaviour of occupants who open the door to generate air movement to improve their comfort, when these high temperatures occurred during the workday. It is equally observed from the same Figure, that the outdoor temperature for the measured period has a mean diurnal variation of 23.6°C, while the simultaneous indoor temperature varied with a mean diurnal variation of only about 4.4 °C. This can be explained by the thermal properties of the external wall. As the office space had neither a significant thermal storage nor an air conditioning source, the indoor environmental conditions for the measuring period, followed the outdoor conditions with attenuation of temperature extremes.

Interior air temperatures curve (Ti2) in Fig. 8 displays information on overheating occurring inside the office space. The air temperatures is gradually rising at daytime from around 9:00 to 15:00, with values between 27.9 and 32.3°C, well above the upper limit of summer comfort zone of Constantine (27.9°C). The comfort zone limit was calculated, referring to ANSI/ASHRAE Standard 55, 17 (2017) and according to (Eq.1).

![Graph showing indoor and outdoor temperatures](image)

Top = 17.8 + 0.31 × tpma (out) \[(1) \]

where: Top is the indoor operative temperature (°C); tpma (out) is the prevailing mean outdoor air temperature.

Office workers perceived discomfort during the entire (100%) monitored time. The presence of overheating in the office space is the effect of high external air temperatures, solar gains and lack of ventilation. Indeed, the air speed measured during this field study was skewed towards rather low values (in the range of 0-0.22 m/s). The presence of air stagnation in the office space is certainly felt
by occupants, in fact ASHRAE Standard 55, 17 (2017) indicates that the ideal air speed must range from 0.2 to 1.50 m/s, in warm climates. In addition, while external air temperature dropped showing a potential for night ventilation technique, the internal temperature never fell below 27.9°C, for instance in the Day 4, external temperature dropped to 14 °C at 03:50 (Fig. 8). The ventilation lack is due to occupant’s behaviour, which often kept the window closed before leaving the space, to prevent drafts that may disturb papers, and to increase security as well (Badeche 2018). As a result, excess heat is accumulated in the monitored space the following day. The low possibility for air movement between outdoor and indoor deteriorates the situation in the daytime. This is due to the effective opening which represents only about 9.8 % of the entire glazed area in its fully open position (Fig. 3). It is obvious that it affect the potential for convective cooling and occupant’s thermal comfort (Wu, 2015).

Air Humidity

Low levels of relative humidity can cause discomfort through drying of the eyes and mucous membranes and skin. High levels makes the area feel stuffy. Relative humidity measured during this field study varies considerably throughout the day between 34% and 49.9 %. This range is within the standards of the American Society of Heating, Refrigerating, and Air Conditioning Engineers, which recommends a relative humidity (RH) of 30 to 60% for building occupants, while working at a desk (ASHRAE Standard 55-2010).

Surface Temperatures

To evaluate envelope thermal behaviour, in situ measurement of Day 1 (03 August 2014) was selected as a typical day. The inside and outside surface temperatures of walls and window were monitored (Fig. 5) and represented in Fig. 9. The curves indicate clearly that indoor air temperature followed indoor surface temperatures. The indoor surface temperature of the glazed partition of the wall (TS2) was higher than indoor temperature, with a maximum difference of 13.1°C and a mean difference of 7.6°C. According to ISO 7730 standards (ISO 7730-2005), this situation of asymmetric radiation may cause supplementary thermal discomfort during occupied hours.

Radiant asymmetry created by a warm vertical surface (the window) causes local discomfort and reduces the thermal acceptability of the space. It was determined by the projection of the maximum discard (13.1°C) on the chart (Fig. 10). The curve provides an estimate of expected percentage of dissatisfied occupants.
cupants (PPD) affected by radiant asymmetry, equal to 2%. It seems clear that the presence of an oversized window deteriorate the comfort conditions in the hot period of the year.

Predicted Percentage Dissatisfied (PPD) Index

The parameters measured by the Delta ohm station (HD32.3) were used to calculate the PMV value, in accordance with Fanger equations (Eq.2 and Eq.3). (Fanger 1986). The Predicted percentage of dissatisfied people (PPD) is subsequently determined.

\[
PMV = [0.303 \times e^{-0.036 \cdot M} + 0.028] \times L \\
PPD = 100 - 95 \times e^{0.03353 \cdot PMV + 0.2179 \cdot PMV^2}
\]

Where the different terms represent, respectively: PMV = Predicted Mean Vote Index; M = metabolic rate (W/m²); L = thermal load (W/m²) defined as the difference between the internal heat production and the heat loss to the actual environment, for a person hypothetically kept at comfort values of skin temperature and evaporative heat loss, by sweating at the actual activity level; PPD= Predicted percentage of dissatisfied.

The total clothing insulation value and the metabolic rate were set at 0.75 Clo and 1.33 MET respectively, according to the charts given in ANSI/ASHRAE Standard 55, 17 (2017) which relates to seated office activities. Results from the comfort calculator of Delta ohm station indicate that occupants experienced a thermal discomfort in the office space, with a mean PPD value of 69.6% (Fig. 11).

Comparison of Measurements in All Monitored Offices

To examine the thermal environment of office spaces in the other directions (NE, NE/SE, and SW), three office spaces were examined. Fig. 12 indicates the presence of overheating, as indoor temperatures in SE and SW orientations were well above the upper comfort bound in 100% of the working time, and 96 and 86% in NE-SE and NE respectively. Occupants working in these office rooms may endure serious indoor thermal discomfort. According to Allab et al. (2017), an additional decrease of the productivity, around 2% occurs for each temperature difference of 1°C, over the comfort limit. Based on this research finding, when the indoor air temperature reaches its maximum value of 38°C in south west orientation, a decrease of productivity of 20 % is esteemed.
Illuminance

The present analysis focuses on evaluating visual comfort based on two indicators that influence the quality of daylight: uniformity rate, and illuminance availability. Illuminanc is defined as the total luminous flux incident on a surface per unit area measured in lux or foot candles. Uniformity describes the evenness of illuminance distributed across a working area (Freewan and Al Dalala 2019). The uniformity rate determines how brightness is distributed in space (Nasrollahi and Shokry2020). It’s calculated according to the Chartered Institution of Building Services Engineers (CIBSE) as the ratio of the minimum illuminance to the average illuminance over the specified task areas (Guide LG10 1999).

The illuminance measurements of horizontal work plane (0.75m from the floor level) were taken under clear sky conditions without any contribution of the artificial lighting system. Field measurement took place in one of the study office rooms (SE office room) at the second floor of the OPGI building. The location of the monitored office room, allows protection against environmental solar masks (Fig. 13).

The office room was 9.00m long, 4.5m wide and 2.70m high. The window is positioned on the South East (shorter) wall. As mentioned earlier (in the section: Description of the monitored areas (Guide LG10 1999).

The horizontal illuminance levels were carried out using a Photo-Radiometer HD2302 at 9:00 am, 12:00 am, and 14:00 pm, on a partially overcast summer day. Photo-Radiometer HD2302 can measure the intensities between 0-199.99×10³ lux with an accuracy <4%. As a reference value outdoor illuminance levels (klux) were measured simultaneously. The author moved in the space from one point of the appropriate grid, to another to collect data, with a reasonable duration of 15 minutes. The lux meter was held at a horizontal position, for ensuring accuracy and stability (Fig. 14).

Results and discussion of illuminance levels

Class II measuring:

The measured data have been compared to standards requirements and guidelines, such as the ISO 8995-2002 (2002) and the European norm EN 12464-1:2011 (2011). Which, specify a threshold for work plane and its surroundings in office spaces varying between 300–500 lx. Data analysis showed that the illumination level in the monitored space, did not meet the illuminance criterion set by the standards, and the space is under-illuminated and not receiving adequate daylighting. This is attested by the mean horizontal illuminance values calculated for all measuring times that were strongly lower than 300 lx (278.80 and 67 lx) at 9:00 am, 12:00 am, and 14:00 pm respectively.
The outdoor illumination values which reached 951.70 klux presented a significant potential for daylighting, while interior illuminance levels were very low. This is very probably linked to three main factors:

1. The number of glazing layers which produces lower U-values, but also lowers the visible transmittance (Tvis) of the skylight at a ratio of 40% (Guide LG10 1999).

2. The tinted glass has lower spectral transmittance values for the whole spectrum ranges compared to a clear glass of the same thickness.

3. The presence of a coating film in the fenestration system which lowers the solar heat gain by increasing reflectivity, has a bad effect on daylight transmittance, and creates “dark” interiors. According to Mousavi and Safari (2020), colored or coated glass can reduce the visible transmittance of a windowpane to values as low as 20%.

Results and discussion of illuminance uniformity

The analysis of daylight distribution indicates the presence of higher illuminance near the window, and very low illuminance at far points of the grid (at 9 meters of glazing). The illuminance values related to the first line (located beyond 1.5 m from the windows directly) denotes the impact of low transmittance of the glazing under direct sunlight.

Illuminance uniformity is used to evaluate the daylight distribution in the space. It is defined as the ratio of minimum illuminance to average illuminance on a surface EN 12464-1:2011 (2011). The illuminance uniformity values calculated for 9:00 am, 12:00 am, and 14:00 pm: were 0.01, 0.2, and 0.25, respectively. Well below the threshold value (0.7) recommended by EN 12464-1:2011 (2011). They indicate a poor daylighting quality: over-illuminated areas close to windows and under-illuminated areas in the back of the room. This situation can be explained by the deep room configuration. The average illuminance calculated shows that the evaluated office room does not have the necessary lighting conditions to be used for the office workers visual tasks.

Many glare methods have been utilized for predicting and quantifying discomfort glare issues inside a building. In this study we focused on identifying potential problem areas where glare is a concern and visual acuity is critical. This technique is generally used for analysis in work where people need appropriately balanced lighting to function well.
Environmental comfort in buildings depends considerably on building performance envelope, particularly the glazed area. This study provides some fundamental ideas to understand the thermal behaviour of large glazed areas and highlights building envelope related problems, in semi-arid climate characterized by summer intense solar radiation. The approach in this research has been focused on a post occupancy evaluation conducted in a real office building. The results reveal that indoor environment responds poorly to thermal and visual comfort requirements in the working place, and requires a high energy input to cool to comfortable temperatures, and to illuminate properly work plans. In the hot period of the year, the glazed part of the facade used without efficient shading may become a source of occupants’ discomfort in the perimeter zone of office buildings, due to high penetration of solar radiation and radioactive heat exchange between the human body and the glazing system inappropriate for semi arid climate. The operable part of the window is undersized; in fact it is unable to effectively control the natural ventilation. In addition, the absence of night ventilation takes part in thermal comfort deterioration, because, excess heat is accumulated in the space the following day.

The need for defining the optimal size is well established, particularly within the context of naturally ventilated buildings. The definition of glazing size for avoiding problems of glare and overheating, and ensuring an optimal illuminance level is much complex for semi arid climates, where high solar radiation plays a prominent role in defining indoor environment.

Indeed, the use of tinted glazing and coating film to protect interior space from solar radiation improves thermal comfort, but at the same time has a bad effect on daylight transmittance, and creates “dark” interiors in the workplace.

Therefore, the judicious choice of the glazing type must balance lighting and thermal needs. Mobile shading devices which prevent the penetration of solar radiation into the building in summer play an important role in managing visual environment, by controlling glare and reducing contrast ratios. This often leads to increased satisfaction and comfort. Several innovative building envelope technologies and concepts are promising solutions to improving indoor comfort conditions, such as adaptive solar façade and smart glazing.

The window design must be part of an integral ergonomic design process, considering simultaneously multiple aspects in order to guarantee thermal and visual comfort. A subsequent step will be to undertake simulations of all those parameters, to determine the most effective fenestration system for the studied climate, for both thermal and visual comfort.

EN 16798-2 TR. Guideline for using indoor environmental input parameters for the design and assessment of energy performance of buildings, European Committee for Standardization, Bruxelles WG19-N89; 2014.

Peixian Li. systematic investigation of thermal comfort compliance criteria. Thesis submitted in partial fulfillment of the requirements for the degree of doctor of philosophy .university of british Columbia; 2020.

Isaksson Ch., Karlsson F. Indoor climate in low-energy houses–an interdisciplinary investigation, Building and Environment, 2006; 41: 1678-1690. https://doi.org/10.1016/j.buildenv.2005.06.022

Wu J. Thermal Comfort and Occupant Behaviour in Office Buildings in South-East China, Thesis Submitted to The University of Nottingham for The Degree of Doctor of Philosophy, University of Nottingham; 2015.

About the Authors

MOUINIRA BADECHE

Lecturer

Department of Architecture, faculty of earth sciences and architecture, University larbi ben Mhidi , Oum el bouaghi.

Member of Laboratory of bioclimatic architecture and environment (A.B.E), university 3 constantine, Algeria

Main research area

My research interests focus on Energy efficiency in buildings, Healthy buildings, and Environmental building adaptation.

Address

Department of architecture, Faculty of Earth Sciences and Architecture, Larbi Ben Mhidi University, Oum El Bouaghi 04000, Algeria.

Tel: 00 213 32 56 31 31

E-mail: badeche_mn@yahoo.fr

YASMINA BOUCHAHM

Lecturer

Prof, Department of Architecture and Urban Planning, University 3, Constantine, Algeria.

Main research area

Energy efficiency in buildings, Environmental and Bioclimatic architecture.

Address

Department of Architecture and Urban Planning, University 3, Constantine, Algeria 25000.

Tel: 00 213 031 78 60 75

E-mail: ybouchahm2@gmail.com

This article is an Open Access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 (CC BY 4.0) License (http://creativecommons.org/licenses/by/4.0/).