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The aim of the study is to develop science-based methodology for estimation the values of the partial 
factors for design of steel structures for the conditions of the Republic of Belarus, taking into account 
the specified values of reliability levels. The object of the study is steel structural elements. Methods: 
mathematical modeling, numerical and analytical methods, parametric and graphic analysis. In 
January 2010 European standards (EN standards, Eurocodes) for the design, fabrication and erection 
of building structures were introduced in the Republic of Belarus. The system of European standards 
(EN 1990) recognise the responsibility of regulatory authorities in each country and guarantee their right 
to determine values related to regulatory safety matters at national level. According to the reliability 
concept of building structures adopted in the standard ISO 2394, EN 1990 the target reliability levels for 
designed structures are set. It caused a necessity to calibrate the partial factors of steel structures for 
Belarusian National Annex to Eurocode 3 based on the target reliability level using probabilistic methods.

KEYWORDS: basic variable, partial factor, probabilistic models, limit state, target reliability level, 
structural reliability.

The partial factor method (semiprobabilistic method), in which the variability and uncertainty of the 
design models and basic variables included in the design models are taken into account by means of 
the partial factor system applicable to the characteristic values of the basic variables has been widely 
practised. According to 6.1(1)P EN 1990 (2002) the basic requirement of the partial factor method is 
as follows: “…it shall be verified that, in all relevant design situations, no relevant limit state is exceeded 
when design values for actions or effects of actions and resistances are used in the design models”.

The partial factor system is one of the tools for differentiation and assurance of the target levels of 
the structural reliability; therefore, the justification of their values with due account to the specific 
geographic, social and economic conditions is a top-priority objective for every state.
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The present investigation is devoted to the justification of values of the partial factors for the veri-
fication of ultimate limit states of steel elements for condition of the Republic of Belarus.

The partial factors values are to be determined by the following methods:
 _ expert judgement;
 _ on the basis of the analysis of compliance with the many years’ experience and construction 
traditions;

 _ statistical methods, which are based on the required probability of design values of the basic 
variables;

 _ calibration with application of the probabilistic methods on the basis of the target (required) 
reliability level. 

The approach based on application of the probabilistic methods is the most advanced one making 
it possible to take into consideration the actual condition of service of the structures and require-
ments for them as well as to ascertain the scientifically grounded partial factors values. In the 
today’s regulations of the European Union, USA, Canada and other countries, the partial factors 
values are adopted according to the results of calibrations performed by the probabilistic methods 
(Allen 1975, Beck 2010, Byfield 1996, Ellingwood 1982).

The main objective when determining the partial factors by the probabilistic method consists in 
assurance of the required reliability level. The next logic stage in regulation of the partial factors 
values consists in the calibration of the partial factors system, which is a norm optimisation issue. 
The calibrated partial factors shall ensure the reliability levels of the most typical structures to be 
as near to the target reliability levels as possible regardless the materials to be used, prevailing 
actions and environment conditions; here the number of the partial factors values is restricted.

The general recommendations for calibration have the status of statutory norm in ISO 2394 (2015) 
and EN 1990(2002) and reflected in the JCSS(2001). The procedure of calibration of the partial 
factors is described in the works Gulvanessian (2002), Sorensen (2001), Vrouwenvelder (1987).

Given the probabilistic models of the basic variables, the failure probability for the basic period 
of time can be determined by the reliability theory methods. The calculated values of the failure 
probability are compared with the target reliability level. Should the result be unsatisfactory, a new 
set of partial factors values shall be established and the calculation shall be repeated until the 
moment of achievement of the reliability level.

The initial data for the probabilistic calculation is the information on the basic variables used in 
the performance functions, therefore the accuracy and adequacy of the probabilistic models of 
the variables exert predominating influence on the calculation results. This circumstance prede-
termines the necessity of the systemic investigations of the statistical parameters of the basic 
variables and formation of the unified principles of their assignment. In the next section the prob-
abilistic models of the basis variables for the conditions of the Republic of Belarus are described.

A special place is held by the matter of establishment of the probability distribution law for the 
basic variable. Usually, the distribution law is established on the basis of the statistical analysis 
of the available experimental data. In the construction industry, the availability of experimental 
data is limited making it impossible to obtain the statistically valid results. Therefore, theoretical 
preconditions are often used when choosing the distribution law. It should be noted that there is a 
general problem of use in the reliability theory of any of reliability random value distribution laws 
in the range of very low probability values, i.e. outside the range where the applicability of the law 
was experimentally justified and its parameters were determined. The general recommendations 
for assignment of the distribution laws to the basic variables have statutory form in the docu-
ments ISO 2394 (2015), EN 1990(2002) and JCSS (2001).

The probabilistic models of the basic variables adopted in various investigations differ often from 
each other. The reliability investigations based on different probabilistic models can lead to differ-
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ent results and, as a consequence, to different values of the partial factors, combination factors 
and other parameters ensuring the achievement of the target reliability levels. It is important to 
take into account that the calibrated values of the reliability parameters belong to a specific set of 
probabilistic models of the basic variables included in the models of resistance and action effects. 
As noted in ISO 2394(2015) “The use of calibrated values jointly with other models can cause the 
unintended high or low reliability levels”.

Probabilistic models for basic variables adopted in accordance with general guidelines JCSS (2001) 
and for snow load model has been developed taking into account the relevant research for the ter-
ritory of the Republic of Belarus Tur (2008, 2009), territorial peculiarities supply rolled steel into 
the country are accounted for the strength characteristics Nadolski (2014, 2015). A special kind of 
the basic variable represents the combined effect of several actions. In this article, these matters 
are not considered. Table 1 presents the probabilistic models of the basic variables included in the 
design models of resistances and action effects when designing the steel structures, on the basis 
of which the investigations of the target values of the reliability index were performed and the 
partial factors values were obtained.

Table 1 
Probabilistic models of 

the basic variables for the 
conditions of the Republic 

of Belarus

Basic variables Distribution µ/Xk V

Steel element resistance Lognormal 1.1 – 1.2 0.05 – 0.08

Uncertainties of the resistance model Lognormal 1.0 – 1.15 0.05 – 0.10

Self-weight Normal 1.0 0.03 – 0.06

Permanent load Normal 1.0 – 1.05 0.07 – 0.10

Imposed load
Gumbel 

distribution
0.45 – 0.6 0.35 – 0.40

Uncertainties of the imposed load model Normal 1.0 0.10

Snow load
Gumbel 

distribution
0.9 – 1.1 0.19 – 0.23

Uncertainties of the snow load model Normal 1.0 0.15

Wind action
Gumbel 

distribution
1.0 – 1.1 0.17 – 0.20

Uncertainties of the wind action model Normal 0.8 0.30

Uncertainties of the action effect model Lognormal 1.0 0.10

On the basis of the values of the sensitivity factors obtained using the first-order reliability method 
(FORM) and with the adopted probabilistic models of the basic variables, the partial factors values 
ensuring the achievement of the target value of the reliability index bt = 3.8 for the reliability class 
RC 2 according to EN 1990 (2002) were obtained.

The values of the partial factors for the resistance (γM) as well as permanent (γG) and variable (gQ) 
actions are presented in the following form:

µ is the mean value; V is the coefficient of variation, and Xk is the characteristic value.

Calibration 
of the Partial 

Factors in 
accordance 

with the 
Reliability Level 

Specified 
by EN 1990 

Standard

where: 
gRd is the partial factor taking into account the uncertainties of the resistance model; 
gm is the partial factor for the material property (yield strength of steel) taking into account the 

(1)γM = gRd × gm ,  γG = gSd × gg , gQ = gSd × gµ × gq ,
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(2)

(3)

Fig. 1 and 2 presents the partial 
factors values gi depending on the 
load ratio χ = Qk / (Gk + Qk) ensuring 
the achievement of the target val-
ue of the reliability index bt = 3.8. 
The results are presented for the 
imposed and snow loads only. The 
dependences gi – χ have similar 
nature when considering the wind 
load. For the purpose of the prob-
abilistic description the mean val-
ues of the statistical parameters of 
basic variables were adopted from 
the range which is presented in Ta-
ble 1. Such a presentation makes 
it possible to reflect the qualitative 
aspect of dependence under inves-
tigation. The obtained partial fac-
tors values are consistent with the 
results obtained by other investi-
gators Holicky (2009), Sadovský 
(2006), Sýkora(2011) .

possibility of adverse deviation of the material property from its characteristic value; 
gSd is the partial factor taking into account the uncertainties of the action effect model; 
gg is the partial factor for the permanent load taking into account the possibility of adverse devia-
tion of the permanent load from its representative value; 
gµ is the partial factor taking into account the uncertainties of the action model (for example, for 
the snow load this factor takes into account the uncertainty of the pattern of distribution of the 
snow load on the roof); 
gq is the partial factor for the variable action taking into account the possibility of adverse deviation 
of the variable action from its representative value.

Fig. 1 
Partial factors values 
ensuring the achievement 
of the target reliability 
index bt = 3.8 for the 
imposed load

Fig. 2 
Partial factors values 
ensuring the achievement 
of the target reliability 
index bt = 3.8 for the snow 
load

The analysis of the partial factors values required for ensuring the reliability level specified in 
EN 1990 (2002) standard has revealed inconsistencies in the reliability concept adopted in the 
Eurocodes, namely:

 _ the obtained partial factors values exceed considerably those applied at present in the national 
and worldwide practice of normalising the variable actions;

 _ the numerical analysis of the prosperity of the design values of the basic variables has shown 
that the probability of exceeding the design values of the variable actions is at the level of  
10-4…10-5. Using the appropriate distribution law makes it possible to determine the prosperity 
of the design value. For example, adoption of the Gumbel distribution for the snow load at the 
ground / gives the probability of exceeding the obtained design load value:
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Analysis of 
the Partial 
Factors Values 
Established 
based on the 
Reliability Level 
Specified 
by EN 1990 
Standard

P = exp [ –exp [ –a (sd – b) ] ] 

sd = Sk × gq

where: 

sd is the design value of the snow load at the ground:
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When describing the snow load at the ground by the Gumbel distribution and with the values of 
the partial factor taking into account the load variability at the ground only  γq (see formula 2), the 
probability of exceeding the design values was 10-5 per year.

Here it is necessary to keep in mind that the values of the variable actions are normalised from the 
distribution of the annual maxima. Therefore such a probability is only applicable when normal-
ising the rare natural and climatic phenomena or accidental  value of the action and unacceptable 
for the design values of the variable actions when considering the permanent design situations. In 
addition, the fractile of this level requires the considerable extrapolation far beyond the observable 
values that causes uncertainties and reduce the trustworthiness of evaluation of the final result.
In the revealed situation, the analysis of the structural reliability levels on the basis previous 
experience of standardization with the adopted probabilistic models of the basic variables. 

a and b are the distribution parameters to be deter-
mined through the mean value µ and standard devia-
tion σ of the whole samples: 

(4)

(5)

a = π/ (σ √6)

b = µ – 0.5772 / a

As an alternative, the assessment of the reliability levels based on the previous experience of 
standardization for the Belarus has been performed. The results are presented as diagrams where 
the reliability index values β are laid off as ordinates and the load ratio χ – as abscissas. Fig.3 pres-
ents the upper and lower limits of variation of β under the simultaneous action of the permanent 
and imposed loads, and Fig.4 – the same limits under action of the permanent and snow loads. 
The abrupt jump of the values β in Fig.4 is conditioned by the change of the partial factor for the 
snow load according to the SNiP (1985). According to Clause 5.7 SNiP (1985) the partial factor 
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For purposes calibration the partial factors the probabilistic models of basic variables included in 
the model of resistance of steel elements are developed for the Republic of Belarus. Reasonable 
probabilistic models of resistance and action effects are allowed to calibrate values of the partial 
factors for design models of steel structures for a target reliability level of building structures ac-
cording to Eurocodes. The further analysis showed that the use of the obtained value of the partial 
factors leads to probability of exceeding (the fractile of annual extremes) the design values more 
than for accident load. 

The way out of this situation is the revision of the numerical values of the parameters of reli-
ability or a slightly different approach to the design reliability. This made it necessary to carry out 
an assessment of reliability parameters on the basis of previous experience of standardization. 
The numerical values of the reliability levels of steel structures have been obtained based on the 
previous normalising experience as applied to the conditions of the Republic of Belarus. When 
performing the verification of the ultimate limit states of the steel elements of the mean reliability 
class (residential or office buildings, etc.), the minimum value of the failure probability for the as-
signment period of 50 years is recommended to be pf = 10-2 for the adopted probabilistic models 
of the basic variables.

The results can be applied in the development of the provisions of the norms relating to the project 
to ensure the reliability of structures, as well as allow you to perform probabilistic calculations of 
steel structures. It is expected that the results obtained from this study will provide background 
materials for development of National annexes and also for a future improvement of Eurocodes. 
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