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Introduction

While strengthening structures with thin layered elements an important role is carried out by the bond 
between separate elements, but there are not any methods which would describe the distribution of 
bond stress in the contact zone when the concrete behaviour is elastic and plastic. In this article a single 
span reinforced concrete beam which is strengthened by CFRP (Carbon fibre reinforced polymer) is 
analysed and three methods which could describe bond stress through the length of the element are 
provided. The three compared methods are: finite elements method (FEM), theory of multiple rods and 
the proposed method of the authors. The similarities and differences of results are shown by diagrams 
and discussed. The method that the authors propose is superior to other methods because of evaluation 
of the plastic behaviour of concrete which is not possible to evaluate it by the method of the theory of 
multiple rods.
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Nowadays in modern world, when architecture is getting more complex and the structural re-
quirements are growing higher, the strengthening of structures plays an important role. In this 
article the strengthening of reinforced concrete beam structures with thin layered materials is 
analysed. The main focus is given to analyse the contact zone between separate layers. Many 
authors analyse the contact zone between fibre and concrete, but these methods separately not 
evaluate the effect of concrete behaviour in reinforced concrete structures. In this article the anal-
ysis of reinforced flexural reinforced concrete structures is made, applying the finite elements 
method, the theory of multiple rods method and the method proposed by the authors.

The experiments show that the highest bond stress in the contact zone was at the front and the 
back end of the beam. However, when the load is increasing, the bond at the end of a beam is de-
creasing, so the highest bond stress shifts a little bit further from the end. It happens because at 
the end of the beam the tension strength of a concrete is exceeded. (Guo2005, Guo 2007)

While analysing a single span beam which is strengthened by CFRP it was received that the shear con-
tact stress increases evenly at the centre of a beam and increases greatly at the ends. (Lorenzis 2001)
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The examined composite beams are made of two elements so the interaction between the ele-
ments is analysed when there are different bonds in the elastic stage because of a hydrothermal 
load. To describe the bond between different elements the theory of multiple rods is being used. 
(Zabulionis 2005).

Methods

Fig. 2
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Fig. 1 
Test setup
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Materials 
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Ec Es ECFRP υc υs υg υCFRP
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Where: Ec, Es, ECFRP – concrete’s, steel’s or carbon fibber’s elasticity module; υc, υs, υg, υCFRP – concrete’s, steel’s, glue’s or 
carbon fiber’s Poisson’s ratio

In this article a single span reinforced concrete beam reinforced by carbon fibre is analysed. The 
test setup and the cross-section of the beam are provided in the figures Fig.1 and Fig. 2. Concrete, 
steel, carbon fibre and glue material parameters are provided in the Table 1.
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2. Theory of multiple rods
The theory of multiple rods was used to describe the behaviour of layered structures when there 
is a certain bond. The calculation method is used by (Ржаницын 1982, Ржаницын 1986). In Fig. 
4 the certain geometrical parameters, bond stress and relative strains distribution in the contact 
zone are provided. The calculation formulas for the two layered structures are provided below.

Fig. 4
Shear stress and 
relative strains 
distribution in the 
contact zone

Fig. 5 
Dividing of the 
cross-section in 
the layers
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where: 𝑘𝑘���� – coefficient which evaluates the bond between carbon fibre and concrete, 𝐴𝐴� – cross-
section area, 𝐸𝐸� – elasticity modulus of layer, ℎ� – height of layer, 𝜀𝜀� – relative strain, 𝑀𝑀 – bending 
moment. 
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where: kCFRP – coefficient which evaluates the bond between carbon fibre and concrete, Ai – 
cross-section area, Ei – elasticity modulus of layer, hi – height of layer, εi – relative strain, M – 
bending moment.

When the first iteration is done the relative strains of every layer are recalculated. If the relative 
strains exceed the elastic limit of this layer, then the elasticity modulus of this layer is reducing. 
If the relative strains exceed the ultimate strains, then the strain modulus of this layer is set to 
0. Sufficiently precise strains are received after calculating a couple of iterations. According to 
the received strains of layers and the strain modulus it is possible to easily calculate the missing 
parameters. 

The results of the analysis are 
shown in Fig. 6 – Fig. 9. The maxi-
mum bonding coefficient according 
to the theory of multiple rods is ξmax 

= 4,69 ∙ 1011  N/m2. This coefficient is 
received by the method of approx-
imation and accepted as maximal. 
If this value would be increased the 
normal stress in the cross-section 
would remain as constant. Accord-
ing to the results in the diagrams 
it is seen that the maximum bond 
stress of the contact zone appears 
at the ends of the element and 
it distribute by parabola. Further 
from the end the bond stress de-
creases significantly and changes 
according to the line function.

Analysing the results according to 
FEM the uniqueness at the ends of 
the beam when the bond is small 
was noticed. Analysis of the shear 
stress obtained by FEM shows 
that the shear stress becomes de-
crease at the end of the beam. The 
maximum value of shear stress 
is reached not at the end of the 
structure, but a little bit before it. 
Such a distribution of stress is in-
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Fig. 6
Shear stress through 

the length of the 
element when the bond 

between the elements 
is small (Eg=0,2 GPa)
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When the first iteration is done the relative strains of every layer are recalculated. If the relative strains 
exceed the elastic limit of this layer, then the elasticity modulus of this layer is reducing. If the relative 
strains exceed the ultimate strains, then the strain modulus of this layer is set to 0. Sufficiently precise 
strains are received after calculating a couple of iterations. According to the received strains of layers 
and the strain modulus it is possible to easily calculate the missing parameters.  
Results 
The results of the analysis are shown in Fig. 6 – Fig. 9. The maximum bonding coefficient according to 
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bond stress of the contact zone appears at the ends of the element and it distribute by parabola. Further 
from the end the bond stress decreases significantly and changes according to the line function. 
Analysing the results according to FEM the uniqueness at the ends of the beam when the bond is small 
was noticed. Analysis of the shear stress obtained by FEM shows that the shear stress becomes decrease 
at the end of the beam. The maximum value of shear stress is reached not at the end of the structure, but 
a little bit before it. Such a distribution of stress is inherent when the concrete reaches the marginal shear 
stress (Gou 2005, Gou 2007). According to the proposed method there is not obtained the decrease of 
stress. 
In the Fig.9 the presented shear stress level is higher because of bigger bending moment that was assumed 
for the elastic plastic analysis. In Fig. 6-8 the normal stress in concrete are under elastic zone.  
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strains are received after calculating a couple of iterations. According to the received strains of layers 
and the strain modulus it is possible to easily calculate the missing parameters.  
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section would remain as constant. According to the results in the diagrams it is seen that the maximum 
bond stress of the contact zone appears at the ends of the element and it distribute by parabola. Further 
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at the end of the beam. The maximum value of shear stress is reached not at the end of the structure, but 
a little bit before it. Such a distribution of stress is inherent when the concrete reaches the marginal shear 
stress (Gou 2005, Gou 2007). According to the proposed method there is not obtained the decrease of 
stress. 
In the Fig.9 the presented shear stress level is higher because of bigger bending moment that was assumed 
for the elastic plastic analysis. In Fig. 6-8 the normal stress in concrete are under elastic zone.  
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Fig. 8
Shear stress through the 
length of the element 
when the bond between 
the elements is perfect 
(Eg=28 GPa)

Fig. 9
Shear stress through the 
length of the element 
when the bond between 
the stress is medium 
(Eg=2,0 GPa) (plastic 
behaviour of concrete is 
evaluated)
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In Table 2 the maximum shear stress of a contact zone is provided. They were calculated by different 
methods evaluating various bonds. One case of calculation was chosen in order to evaluate the plastic 
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was accepted that the concrete strain modulus is varying linearly from the highest to zero (when a crack 
appears). This change is described in formulas (7, 8). Also, in this table the maximum deviation values 
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difference of authors proposed method did not exceed 5,9 %. 
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According to the results obtained by finite elements method and the theory of multiple rods method, the 
formulas to calculate the shear stress through the element length were derived. Coefficient evaluating the 
bond between the concrete and the carbon fibre: 
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element when the bond between the elements is 
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Fig. 9. Shear stress through the length of the 
element when the bond between the stress is 
medium (Eg=2,0 GPa) (plastic behaviour of 

concrete is evaluated) 
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herent when the concrete reaches 
the marginal shear stress (Gou 
2005, Gou 2007). According to the 
proposed method there is not ob-
tained the decrease of stress.

In the Fig.9 the presented shear 
stress level is higher because of 
bigger bending moment that was 
assumed for the elastic plastic anal-
ysis. In Fig. 6-8 the normal stress in 
concrete are under elastic zone. 

In Table 2 the maximum shear 
stress of a contact zone is provided. 
They were calculated by different 
methods evaluating various bonds. 
One case of calculation was cho-
sen in order to evaluate the plastic 
behaviour of a concrete. In order 
to reach the plastic behaviour of a 
concrete it was needed to increase 
the bending moment of a beam. 
The tension strength of a concrete 
. It was accepted that the concrete 
strain modulus is varying linearly 
from the highest to zero (when a 
crack appears). This change is de-
scribed in formulas (7, 8). Also, in 
this table the maximum deviation 
values of authors proposed method 
from FEM or the theory of multiple 
rods are provided. The maximum 
difference of authors proposed 
method did not exceed 5,9 %.

Maximum relative strains when 
the concrete is in elastic stage: 
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Maximum relative strains before 
the crack appears: 
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(8)

According to the results obtained 
by finite elements method and 
the theory of multiple rods meth-
od, the formulas to calculate the 

Table 2 
Maximum shear 
stress

τFEM, Pa τTMR, Pa τPM, Pa
Max 

difference, %

Poor bond 4,89 ∙ 104 5,07 ∙ 104 5,00 ∙ 104 2,16

Medium bond 1,64 ∙105 1,57 ∙ 105 1,55 ∙ 105 5,90

Perfect bond 3,80 ∙ 105 3,80 ∙ 105 3,76 ∙ 105 1,01

Medium bond
(Plastic 
behaviour of 
concrete is 
evaluated)

5,73 ∙ 105 - 5,69 ∙ 105 0,71
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shear stress through the element length were derived. Coefficient evaluating the bond between 
the concrete and the carbon fibre:

 𝑘𝑘���� = � 𝜉𝜉
𝜉𝜉���

�
 (9) 

Analysing the bond between the concrete and the carbon fibre it was noticed that the maximum shear 
stress are received at the ends of structures and directly depends on normal stress of the fibre: 

 𝜏𝜏��� =
𝑘𝑘���� + 0,33

10 ∙ 𝑘𝑘���� ∙ 𝜀𝜀���� ∙ 𝐸𝐸���� (10) 

Shear stress at the ends of an element are distributed by a principle of parabola and could be calculated 
by the following formulas:  

 𝜏𝜏 = 𝜏𝜏 ∙ 𝜏𝜏� + 𝑏𝑏 ∙ 𝜏𝜏 (11) 
 

 𝜏𝜏 = 𝜏𝜏���

����
� − �

� ∙ 𝜏𝜏�
 (12) 

 
 𝑏𝑏 = −𝜏𝜏 ∙ 𝜏𝜏� (13) 

 

 𝜏𝜏� =
𝐿𝐿
2 ∙ 0,9 −

0,02
𝑘𝑘���� (14) 

Distance from the end of element where the parabola equation of shear stress is valid: 

 𝑙𝑙� = 0,9 ∙ �𝐿𝐿2 − 𝜏𝜏�� , 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑙𝑙� ≥ 0 (15) 

 
Discussion 
The analysis was made for simple supported beam 1 Fig. loaded by bending moment at the ends.  For 
different loading cases (if the form of moments diagram change) the additional analysis has to be made 
and the proposed formulas have to be checked additionally. The plastic behaviour of concrete was 
evaluated by the proposed method and the FEM but not by the theory of multiple rods  

Conclusions 
 

1. The difference of values of shear stress using the proposed method did not exceed 5,9 % 
compared to FEM and the theory of multiple rods.  

2. Maximum shear stress of contact zone obtained at the ends of a beam or close to it.  
3. The shear stress in contact zone at the ends of a beam, according to the proposed method, 

distributes by a parabola function.  
4. Authors proposed method is possible to be used for calculation of the reinforced concrete 

structures strengthened by carbon fibre at the elastic plastic stress stage of concrete. 
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