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Due to the constructionindustry, the climate crisis had deepest environmental impact. In addition to consuming

scarce mineral-based materials, the building industry is responsible for up to 39% of global carbon dioxide Abstract
emissions and the accumulation of solid waste in landfills, rivers, and seas. To cut carbon dioxide emissions
and mitigate the effects of climate change on the construction industry, a new, more sustainable, and
renewable production matrix must be considered. An approach is using seaweed and seagrass as bio-based
materials matrix, from macroalgae or microalgae stranded on the shore or sustainable crops. Transforming
algae into usable construction materials involves a process of harvesting, processing, and refining. This
article has systematically reviewed the literature about advances and the potential of using marine species
as construction materials matrix. To this end, this paper explores the existing literature on architectural
projects and research on various species of seagrass and seaweed worldwide.

This review concludes that numerous case studies of dwellings around the world have demonstrated Kt
and validated the use of seaweed for applications such as coatings, thermal insulation, and construction 022 u
additives. Among the most important construction related properties of seaweed are fire resistance, low Journal of Sustainable
thermal conductivity, and resistance to moisture and insect damage. For instance, prototypes incorporating Architecture and Civil Engineering
Neptune grass (Posidonia oceanica) exhibited a thermal conductivity of 0.044 W/m-K comparable to that of vol.2/No. 382023

pp. 177-192
expanded polystyrene, which typically ranges between 0.035 and 0.037 W/m-K. DOI 10.5755/j01.sace.38.2.40040
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The availability of seaweed, considered the waste that pollutes an essential part of the world's coastline, is
increasing every year. Nevertheless, not all types of seaweed can be used as construction materials. For this
reason, there are some challenges in creating sustainable cultivation of seaweed species, like the need for
efficient methods, harvesting, and its processing. In consequence, these costs must be incorporated into the
selling price. However, these difficulties do not diminish the seaweed and seagrass's potential as a renewable
substitute in the production matrix of the construction industry. These challenges must be overcome before
the industrial use of marine species as building materials becomes a reality. Governments must provide
financial support to get these initiatives off the ground, especially in the crucial pre-competitive phases. At
the same time, the development of prefabrication systems is of vital importance. These systems will enable
certification and compliance with building materials regulations and pave the way for a more sustainable
future for the industry. It is also necessary to establish seaweed and seagrass cultivation methods that
will make the initiative sustainable in the long term, incorporating the costs associated with cultivation,
harvesting, and processing into the selling price.

Keywords: bio-based materials; seaweed; seagrass; macroalgae and construction.

The construction industry exerts a substantial impact on the ecosystem throughout its life cycle,
including solid waste accumulating in landfills, rivers, and marine ecosystems. Contributing sig-
nificantly to environmental degradation and greenhouse gas emissions. (Liu et al. 2023), (Wang,
2023; Farghali et al., 2023; Yang et al., 2023). In Chile, for instance, it has been quantified that 35%
of solid waste is a consequence of construction activities, and it is projected that by 2025, this will
reach 7.4 million tons (MINVU, 2019).

In light of these challenges, it is increasingly necessary to transition from a production mod-
el reliant on mineral and petroleum derived materials toward one that prioritizes sustainable,
low-impact alternatives. Among these, bio-based composites developed from living organisms
such as algae have emerged as a promising avenue for reducing the environmental footprint of
the construction sector.

This article seeks to examine the viability of marine biomass—specifically seaweed and seagrass
species such as Posidonia oceanica and Sargassum natans—as sustainable thermal insulation
materials in the built environment. The working hypothesis is as follows: “Seaweed and seagrass
species, such as Posidonia oceanica and Sargassum natans, provide thermal insulation properties
comparable to those of synthetic materials, but with enhanced fire resistance.” To validate this
hypothesis, the study presents a critical review of existing literature related to the application of
marine species in construction, with a particular focus on architectural case studies and experi-
mental research on the material properties of various algal and seagrass species.

Bio-based materials used in construction generally seek to replace cement and plastics, high-
lighting research into green cement, biodegradable plastics, plant-based thermal insulation, and
wood-based composites. (Kugo & Mai, 2022; Bousaria, 2021; Affan et al., 2023; Rocha et al., 2022;
Azimatum & Nurmala, 2024; Dhanasingh et al., 2024; Deng et al, 2023; Ges et al., 2021; Lizundia
et al, 2022)

The advancement of bio-based materials stands out for their potential to reduce greenhouse gas-
es, use water in production, and avoid the accumulation of waste (Bjanesay, et al., 2023; Chen et
al., 2024; Delgado et al., 2023) for their thermal, mechanical, and acoustic resistance properties.
Despite these benefits, the adoption of bio-based materials in construction remains marginal—
representing less than 3% of the total material matrix—due to various barriers. These include
a lack of awareness among industry stakeholders, limited regulatory support, high production
costs, restricted material availability, technological incompatibility with conventional systems, and
underinvestment in research and development (Hossain et al., 2020).

To overcome these limitations, further interdisciplinary research is required. Key areas of focus
include the assessment of physical and mechanical performance, regulatory feasibility, materi-
al supply chains, cost analysis, and strategies for integrating bio-based materials into existing
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production systems. In this context, the present review aims to address these questions by ex-
ploring the potential of seaweed for applications such as surface coatings, thermal insulation, and
construction additives.

The availability of algae as a renewable resource for construction has great potential because of
its exceptional adaptability, brief growth time, and resource sustainability. (Wagas, et al., 2024)
Climate change has caused some species, such as Japanese sargassum (Sargassum muticum)
seaweed, to expand worldwide, in many cases generating the accumulation of it and pollution of
coastal edges. (Affan et al., 2023) However, algae farms and carbon sequestration projects through
seagrass meadow restoration make sustainable algae production globally available. (Zhang et al.,
2022; Gonzalez et al., 2021) The amount of biomass could be grown on less than a tenth of the
land since algae grow ten times quicker than terrestrial plants. Algae farms do not compete with
agricultural growth for land and do not need fresh water. (Tzachor, 2019) Data from the Food and
Agriculture Organization (FAO) show that between 2000 and 2019, the world's algae production,
both farmed and wild, rose by over three times, from 118.000 tons to 358.200 tons (FAQ, 2021).

Seaweed and seagrass are two significant kinds of macrophytes within marine coastal ecosys-
tems. Seaweed are primitive plants that lack roots and employ holdfasts to attach themselves
to the seafloor. They are categorized into three primary forms of seaweed, also known as mac-
roalgae, as in fig. 1: green (chloropyceae), brown (phaephyceae), and red algae (rhodophyceae).
(Abdel — Kareem and ElSaied, 2022) While seagrass is a marine flowering plant, it has roots,
stems, leaves, and flowers and forms seagrass meadows that are kilometers long. (Short et al.
2007)

Red Macroalgae Central Zone Chile Green Macroalgae Central Zone Chile  Brown Macroalgae Central Zone Chile

Given its ecological importance, seagrass plays a crucial role in maintaining the health of coastal
ecosystems, offering habitat for marine organisms, and aiding in carbon storage; seagrass mead-
ows absorb more than twice as much carbon as terrestrial ecosystems. (Montero et al., 2023;
Pereira et al., 2024). Although only 60 seaweed species are worldwide, its seagrass meadows
stretch several kilometers of coastline. According to Short (2007), seagrass spread in four tem-
perate bioregions worldwide; the Pacific is the largest and most diverse bioregion, home to 24
types of seagrasses.

Seaweed species are described as 50.000, considering freshwater and terrestrial species; over
7000 are red algae, 1500 are green algae, and 2000 are brown algae. (Guiry, 2024) In continen-
tal Chile, about 450 species of macroalgae out of 800 are described, including Rapa Nui, Juan
Fernandez Archipelago, and Antarctica.

Seaweeds Central Zone
Chile
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The growth of algae, like sargassum belt (Wang et al, 2019) and green macroalgae proliferation,
"green tides," produce large volumes of algae stranded on the coast and the beaches, gener-
ate severe consequences for the local communities, as toxicity phenomena are produced by the
emission of gases such as hydrogen sulfide (H,S), and a significant environmental degradation.
(Liu et al. 2033; Schreyers et al. 2021; Rodriguez et al., 2022; Bueno et al., 2023) During the year
2024, 4 tons of Lechuguilla (Ulva Lactuca) were reported stranded on the Chilean coast beaches
of Coquimbo. To harvest them in a sustainable manner more specifically, hiring divers, had a cost
for the local authorities of $9500 US per month (Diario Regional, 2024).

This study employed a systematic review methodology to examine the extensive body of existing
literature thoroughly. The selection of target papers was conducted using data processing soft-
ware, Fig. 2 (Vosviewer) with specific topic keywords related to the research area of seagrass in-
sulation, seaweed insulation, seaweed as building insulation materials, and seaweed construction
material from the databases of Web of Science, and Scopus, Google Scholar and Boolean oper-
ators was included for pivot tables analysis and final data processing. The criterion for selecting
these papers included relevance to the research area, publication in peer-reviewed journals, and
the publication date. To better understand the technical and constructive systems used, referenc-
es before 2019 were included in the construction systems analysis and formulation of results.
In the case of statistical analysis, we only consider publications done on peer-reviewed journals
between 2019 and 2024.

During the bibliographic review, a substantial number of over 1500 papers were identified, the
principal links were presented in Fig. 2 The initial articles that did not align with the construc-
tion area were eliminated, such as those focusing on food, fertilizers, coagulants, biofuels, and
bioremediation. After this filtering process, 70 articles were deemed within the relevant years and
related to the construction industry. The following data were analyzed from the selected papers:
year, place of research, algae studied, and construction system used.

Based on the references studied, a comprehensive description of the leading seaweed and sea-
grass construction systems, their potential, and the challenges facing using seaweed in the con-
struction industry are provided.

mechanical properties
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General mapping of the selected literature

Research on the use of algae in construction has seen a significant upswing in recent years, with Results and
articles increasing from 5 to 22 in 2023. Research is primarily led by Germany with 11 articles,  diScussion
France with eight articles, and Malaysia, China, and India with five articles each, who have not

only spearheaded the research but also made

signiﬁcant strides in the practical application of Constructions solutions in research review
algae in construction. Among the various types
of seaweed and sea grasses, as shown in Fig 4
the most extensively studied is Neptune grass
(Posidonia oceanica), closely followed by the
diverse range of Sargassum family. As shown
in Fig 3 the research field in seaweed and sea-
grass in construction are particle boards, fire
retardant, additives and thermic insulation.

Construction solution

Construction solution

Type of algae under investigation Type of algae under
investigation

posidonia oceanica
Seaweed gum
Eucheuma cottoni

opes lancifolius, Solieria chordalis, ubva sp,...

tera marina

Zostera marina L and zostera

Gracilaria chile

Articles

Construction systems with seagrass or seaweed in history

Traditional construction systems are linked not only to cultural heritage but also to regional re-
sources. Therefore, the available materials are valuable to communities. In these ancient build-
ings, seaweed and seagrass were frequently utilized; (Jun et al., 2012) the first recorded uses of
seaweed in construction belong to the Chinchorro Culture in Chile. They are found in one of the
oldest structures on the northern bank of the mouth of the Loa River in Antofagasta, Chile, more
specifically between Pisagua and Chafaral. Its occupation dates between 2800 B.C. and 1800 B.C.,
known archaeologically as Sitio Caleta Huelén 42.

According to Llagostera's research, this site
shows the presence of simple semicircular
subterranean living structures (Fig. 5) with
vertical stone walls made out of a mortar of
ash, seaweed sand, and shells. Sealed floors
are made out of clay and seaweed mortar
which waterproofed the floor under which
the bodies from their burials were spread out.

(Llagostera, 1989 en Cocilovo et al 2005; Sanz
etal 2014) Caleta huelén 42; chinchorro culture living structures

Wolf hide roof
Wood roof
Cactus beam

Caleta Huelén 42;
Horizontal Ragstones An'tofagasta, Chile,
Mortar seaweed ashes Chinchorro culture

Stone sterm wall structures
Floor seal seaweed

Compacted earth
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In Japan, the technique of Shikkui lime plaster from Korea, widely used since the 16th century,
used seaweed glue, among other materials. Seaweed glue is more workable than the Shikkui
mixture because it holds onto moisture and postpones the setting. In the case of the Shikkui mix-
ture (shown in Fig. é), the principal material is lime. In the Nori-Tsuchi technique, seaweed glues
are added with sand and clay to prepare earth plasters. (Hasado, 2019) In the case of Japan and
Korea, Carrageenan and Agar polysaccharides are obtained from red algae. In Chile, it is probably
obtained from alginate due to the abundance of brown algae. In both cases, the algae is processed
to obtain polysaccharides. This substance will serve as a gelling agent for clay coatings; the most
common preparation consists of a process of soaking and cooking at temperatures between 60
and 100° C; however, in the case of Chile, ash is more frequently used in the mortar.

» Supporting beams
-
PP 00 |
| Bamboo trellis - like
A frame {kornal)

Hemp twine
Bamboo

Sandy lime: plaster wall

Smooth plaster finish - shelfish
lime and paste of boled seaweed

Earth foundation wall
Stone refaining wall

Compacted earth
Japan Shikkui technique

The temperature allows releasing the molecules responsible for the stabilization, forming a gel
that will be more fluid when stirred and will solidify in the resting state. In the presence of minerals
such as clay or calcium ions, the sugar chains of the polysaccharides will interact as a glue con-
necting the mineral particles to connect the mineral particles, creating a kind of network. (Vissac
etal. 2017)

Two examples of cultural heritage construc-
tions are: 1) the thatched roof of seagrass, ob-
served at roof houses in Jidodong Peninsula,
Shandong province, China as shown in Fig. 7
with a 1000-year history, and 2) the thatched
roof of seagrass in the Island of Laesg roof
houses in Kattegat strait, Jutlandia peninsula,
Denmark as shown in Fig. 8 from the XVII's
century. In both cases, dwellings were built
Jiadong seaweed along some coastal areas using a seagrass

Wiped straw mud
Guard board
Beam Frame

Stone sterm wall
Compacted earth

roof covering that provides a durable, sustainable, and livable low-carbonroof envelope. The high
concentration of salt and the antibacterial properties of eelgrass (Zostera Marina's) prevent insect
attacks and improve the roofing fibers' corrosion and fire resistance. (Liu et al 2023; Vilas-Boas
et al, 2017; Zhao et al,, 2023; Zhenyu, and Wei, 2013) The air cavities of the seagrass and sea-
weed cellular structure and its thick epidermis enhanced the sound and thermal insulator. (Jun
2012; Ding and Zhang, 2018; Li et al 2023; Eybye, 2020; Kuang, 2013) The air-permeable capacity
and construction breathability of the roof construction system increased the internal air quality of
LLaesg traditional houses (Unesco, 2023)
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Although seaweed is known to be used as a
thermal insulator in timber-framed construc-
tion systems, the earliest evidence dates to
1683 at the Pierce dwelling in Dorchester,
Massachusetts. The traditional timber-framed
thermal insulation seaweed-based was man-
ufactured in the beginning of XIX's centu-

Exterior of cabot’s quilt kraft

Interior of cabot’s quilt
ry in thermal insulation quilts (as shown in eelgrass insulation
Fig. 9) Industrialized products such as Cabot's Exterior of cabot's quit igalt
quilt and seafelt were marketed in England, Cartr e
Canada, and the United States dwellings and
skyscrapers applications. (Echeverria & Cox, Scle plate

1999)

Current experiences using seaweed thermal insulation are Modern Seaweed House in Laese is-
land and the 14 public dwellings in Platja dén Bossa, Balearic Islands, Iberian Peninsula, Spain.
Eelgrass (Zostera Marina) and Neptune grass (Posidonia ocednica) are used in floor, facade, and
roof structures. They are part of the core of a thermal insulation panel with a wooden structure as
shown in Fig. 10. In the first one, it is also applied to the walls and roof as cladding. (Vandkunsten
Architects, 2013; Widera, 2014) On the other hand, in Balearic dwellings, clay brick finish cladding
was applied. The Balearic Islands' Housing Institute monitoring data reveal a thermal conductivity
on the Neptune grass (Posidonia Oceanica) of A =0.044 - 0.041 W/mK depending on the density
sample. As reference expanded polystyrene foam, a regular insulate material, has a thermal con-
ductivity of A =0.035 - 0.037 W/mK. (Mufioz, 2015)

Vapor retarder
Osb board
Laminated beams gl 24

Seagrass based fimber - framed thermal

e

Island of Laesg roof
houses in Kattegat strait,
Jutlandia peninsula,
Denmark

Seaweed-based timber—
framed thermal insulation
section, Cabot s quilt

Seagrass - based
timber - framed thermal
insulation section.
Balearic Island dwellings
in Iberian Peninsula,
Spain
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Research proposal construction systems of materials based on macroalgae and seagrasses

About the thermal insulation subject, consider twenty-three results. The investigation mostly con-
siders thermal insulation panels with Neptune grass (Posidonia Ocednica). Main results indicate
that for densities between 50 and 200 kg/m3, varied from 0,0360 to 0,0510 W/m.k, Neptune grass
(Posidonia Ocednica) is mould resistant and has a more effective protection against biological at-
tack. As well ,seagrass has a low heat release rate and does not ignite when exposed to a single
flame, in consequence insulation boards are more fire resistant than those from wood fibers.
(Muhoz, 2015; Kugo & Mai, 2022; Rojas et al., 2023; Hamadoui et al., 2018)

Species Autors Thermal conductivity Density

Neptune grass (Posidonia

_ Mufioz, 2015; Kugo & Mai, 2022 | A=0.041 w/mk 215 kg/m3
oceanica)
Eelgrass (Zotera Marina) Mufioz, 2015; Kugo & Mai, 2023 | A =0.050 w/mk 215 kg/m3
Pelillo (Gracilaria chilensis) Sg%s] gt al 2023; Hamadaouiet |, _ o 530 v /mk 60 to 80 kg/m3
Roj tal 2023; H iet
Lechuguilla (Ulva sp.) ag?;g al 2023; Hamadaouiet g 30\ /mk 50 to 70 kg/m3

As shown in table 1 we can conclude that Lechuguilla (Ulva sp.) and Pelillo (Gracilaria chilensis)
are the most suitable species because it has a lower thermal conductivity, and lower density.

Almost thirty investigations include seaweed or seagrass as an additive in concrete mortar, ex-
trusion mortar, plaster composites, soil or clay composites, or biopolymers, although they mainly
employ different types of brown seaweed. There are a few that research about Neptune grass
(Posidonia oceanica) in fiber reinforced concrete or red seaweed species. The additive studied
works by replacing cement or aggregates in percentages between 0,1% to 50% in fiber reinforced
cases, percentages between 5% to 20% were observed. The best results stand out in the improve-
ment of Co, absorption, increases of compressive strength and tensile strength of 27% with the
addition of 10% fibers. Other results that stand out is the increase of loading strength in a thin
cement sheet.

Species Autors Density
0 .
Brown seaweed, Chahbi et al, (2024) 10% of replace cementAby algae powder improve
sargassum Compression strength in a 10%

15% of replace cement by wet marine algae or
Ramasubramani et al dry marine algae improve compression strength,
Brown seaweed a 17% for wet algae and a 15% on dry algae. In

(2019) flexural strength improve a 24% for wet algae
and 28% in dry algae use.
Red seaweed, . 20% SC improve a 15% compression strength ,
Eucheuma cottonii Sarbini et al. (2019) the 20% SC improve a 81% the flexural strength
o
Red §eayveed, . Baloo et al. (2021) Seaweed. ,replacemenlt cement 15% improve
Gracilaria species compresion strength in a 1%

As shown in table 2 we conclude that the most significant result is the one obtained by Sarbini et
al. (2019) because the 20% SC improves 81% the flexural strength.
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Earth-insulated walls, using stranded Kelp (laminaria digitata) seaweed at 20% or replacing flax
straw with Japanese sargazo (Sargassum muticum) algae decreased the thermal conductivity by
34% and 38%, respectively. (Bousaria, 2021; Affan et al, 2023; Olacia et al. 2020) The reinforce-
ment of adobe blocks with 40% of Sargasso (sargassum natans, muticum or sargassum fluitans)
improves the compressive strength from 7,5 to 11 MPa (Rossignolo, 2022; Duran et al., 2024),
considering a usual compressive strength between 1,5 to 6,89 MPa (Rodriguez, 2020)

The results of Rocha et al. (2022) show an increase in mechanical properties. Srinivas et al. (2021)
and Azimatum & Nurmala (2024), show that the production of biocement using microalgae as
an additive has a crack healing potential . Another result shows microalgae potential in additive
manufacturing, improving the ease of the extrusion process by reducing the yield stress, similar
mechanical properties between algae composites and traditional print cementitious, and a micro-
structure characterized by smaller pores. (Allegue et al., 2015; Agnoli et al., 2019; Benjeddou et
al., 2023) Likewise, research on using alginate as a base for aerogels shows a reduction of 93% in
flammability and 10% in thermal conductivity (Berglund et al., 2022; Chahbi et al., 2023; Wichmann
et al,, 2022).

Particle board solutions include thirteen research works, mostly with Neptune grass (Posidonia
Ocednica) seagrass fibers, secondly, Elkhorn (Kappaphycus alvarezzi) fibers, and Sargasso,
(Sargassum muticumm) fibers, both seaweeds. In general, researchers agree that the addition
of seagrass or seaweed fibers decreases strength but increases impact resistance, fireproofing,
and thermal resistance. The principal challenge of seagrass or seaweed fibers for panels is their
water absorption within the responses to pretreatment on the fibers, addition of complementary
compounds as plaster or cellulose, and the incorporation of different types of fibers. The principal
results show that the incorporation of 10% of seaweed or seagrass fibers does not significantly
affect the mechanical properties of the boards. (Rammou et al. 2021)

According to Kugo & Mai (2022), investigations indicate that the incorporation made from 50%
wood particles and 50% of Neptune grass (Posidonia Ocednica) leaves showed the best relation
between the advantages and disadvantages in seaweed or seagrass particle board use. Using
Gracilaria verrucosa (Gracilariopsis longissimi) with 50% sawdust and 12% adhesive reaches
the normative in physical and mechanical Japanese Industrial Standards for panel parameters.
(Autem et al,, 2023; Alamsjah et al. 2017; Dove et al, 2019; Khiari and Belgacem, 2017; Kuqo et
al., 2019;)

Regarding fire retardant, this is the category with the fewest investigations, researchers using
alginate from different brown seaweed show as main results the reduction of flammability, and
thermal conductivity. Nanoclay and cellulose improve mechanical strength and thermal stability
of alginate fire retardant. In addition cellulose enhances antibacterial capacity and hydrophobicity.

The primary focus of this article is to highlight the potential and advancements in using marine
species to enhance sustainability and reduce the environmental impact of the construction in-
dustry. To achieve a comprehensive review of the existing literature on architectural projects and
research on various species of seagrass and seaweed globally has been conducted.

In general, species used for construction purposes match the same ones that are stranded on the
coasts. They can be harvested in a sustainable manner from the coast in a manual way, specifi-
cally by divers.

In this context, the species with the most splendid future are the Lechugilla (Ulva sp.), Sargazo
(species from the family of Sargassum muticum), and Neptune grass (Posidonia Ocednica) been
invasive and whose growth worldwide extends for several kilometers, generating ecological and
financial damage to the coasts and interstitial zones of the sea.

Conclusions
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Despite the rarity of the use of algae today, a diversity of examples of traditional architecture have
been studied and validated the seaweed properties for use as coatings, thermal insulation, and
additives. Researchers like Mufioz (2015), Kugo & Mai (2022), Bousaria (2021), Affan et al. (2023),
Rocha et al. (2022), and Azimatum & Nurmala (2024), among others, have reinterpreted these
techniques in modern proposals for prefabricated systems and revaluation.

The use of seaweed in thermal insulation blankets in general optimizes the potential of Neptune
grass (Posidonia Ocednica), its thermal properties (0.036 W/mk), its fire resistance, and its resis-
tance to biological attacks, in this context, it is not necessary improve water resistance or me-
chanical resistance. In Chile we can conclude that Lechuguilla (Ulva sp.) and Pelillo (Gracilaria
chilensis) are the most suitable species because they have a lower thermal conductivity, and low-
er density. The construction systems use wood framing systems due to the ease of implementa-
tion in the currently used industry, minimal processing, and reasonable cost.

For Particle board solutions, although there are studies that have replaced up to 50% of wood
fibers, achieving a balance in the requirements of current boards, the best mechanical results are
achieved with a maximum of 10% fiber replacement. In this case, the importance for optimization
is the end use of the board as a covering or structural type. It is also important to note that some
of the research observed includes the use of formaldehyde as a binder, a material that has been
shown to cause cancer. (Tenney et al. 2024)

In the additives area and fire retardant, the alginate or algae subproducts are used in low percent-
ages, improving mechanical resistance, fire resistance, moisture resistance, and cracking, but the
energetic and environmental cost is not always lower than actual alternatives. However the most
significant result is the one obtained by Sarbini et al. (2019) because the 20% SC improves 81%
the flexural strength.

Transitioning from existing research and specific architectural projects to the industrial use of ma-
rine species as a construction material is crucial to secure financial support from governments.
This support is essential for the initial pre-competitive stages of these initiatives and for develop-
ing prefabrication systems that meet the certification and regulatory requirements of construction
materials in each country.

Equally important is the establishment of seaweed and seagrass cultivation methods that ensure
the initiative's sustainability in the long run, involving incorporating the costs associated with their
cultivation, harvesting, and processing into the sale price, thereby ensuring the economic viability
of the initiative.

Improving seaweed production by incorporating added value in the harvesting area would make it
possible to distribute the profits from its production in the localities affected by its stranding, cul-
tivation, and production. From a regulatory perspective, construction materials worldwide must
be certified and fulfill diverse regulations. Incorporating financial support for the early stages of
development of these products, such as certifications and testing for compliance with regulations,
would provide incentives to reduce the gap with other products more widely accepted in the mar-
ket and increase the viability of their commercialization.
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