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1. Introduction

Currently fibres are applied more often not only 
for concrete, but also for reinforced concrete bending 
elements, in order to increase the stiffness and cracking 
resistance of elements. There are various types of fibres, 
however bending elements are more effective when steel 
fibre is being used. Small amount of steel fibres will not 
have essential influence on bending element behaviour, 
however sufficient amount can significantly to reduce the 
normal crack width and deflection (Vandewale L. 2000, 
Kaklauskas G. 2011, Grimaldi A. et al. 2004). Steel fibre, 
as well as reinforcement, does not have significant effect 
until the moment of crack opening. However, after this 
moment it can influence tension zone behaviour, even so 
increasing load bearing capacity (Jones P. A et al. 2008). It 
should be mentioned that the behaviour of steel fibre and 
ordinary reinforcement reinforced concrete elements is 
not sufficiently analysed until now, especially with limited 
bond between reinforcement and concrete. The influence 
of technological factors, which can significantly adjust the 
experimental results, also complicates such studies. So, a 
slight adjustment of specimen making technology can give 
perceptible deviation of results. Taking into account that 
element always starts fracturing in the weakest section, 
it is difficult to simulate it by natural experiment. Due to 
these and other reasons the scatter of results of steel fibre 
reinforced concrete specimens is relatively large and it is 
not easy to predict it sufficiently accurately. It is worth to 
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mention that the scatter of results of steel fibre and ordinary 
reinforcement reinforced concrete elements is smaller than 
steel fibre reinforced concrete elements, because in this 
case the behaviour of tension zone is determined not only 
by amount and orientation of fibres in section, but also by 
longitudinal reinforcement which always is in the design 
position, and its behaviour can be sufficiently accurately 
predicted.

Currently fibre reinforced concrete is usually tested 
according to LST EN 14651 or DIN 1048 requirements. 
According to LST EN 14651 element is tested when one 
concentrated force is acting in the middle section, and 
specimen has pre-made notch in bottom. This notch is 
intended to control opening normal section, because in 
order to determine the fracture energy the relationship curve 
of crack width and force is required. Taking into account 
that based on experimental results crack width sufficiently 
well correlates with element deflection (Barr B. I. G. et al. 
2003), the appropriate crack width can be calculated from 
determined deflection. Therefore, in this case, weakened 
section cracking describes element deflection, i.e. this section 
curvature. If tests would be performed with steel fibre and 
ordinary reinforcement reinforced concrete element, there 
would not be such correlation between deflection and crack 
width, because the crack in weakened section would have 
developed significantly slower than in steel fibre reinforced 
concrete element. In this case, in order to get correlation 
between deflection and crack width both – tension concrete 
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near the crack and tension reinforcement stresses should 
be evaluated. According to DIN 1048 the influence on 
steel fibre is evaluated slightly different. The cross-section 
is not weakened by a notch, but changed loading scheme 
only. In the middle zone two concentrated loads are added, 
to get pure bending zone where in its weakest section the 
normal crack will open. In this case behaviour of fibre is 
more accurately evaluated, taking into account that fibre 
is randomly distributed. Therefore, normal crack will start 
to develop in that section (in the pure bending zone), in 
which the content of steel fibre and its distribution will have 
a minimal influence on crack behaviour in tension zone. 
In this regard, DIN standard is more accurate than LST 
EN. In any case, if steel fibre and ordinary reinforcement 
reinforced concrete element is analysed, need to know its 
state of stress, in order to presume relationship between 
deflection and force. When there is sufficient bond between 
reinforcement and concrete, relationship of deformations is 
linear, however if the bond is not sufficient, according to 
this relationship we will not determine the force value in 
reinforcement. This value can be determined according to 
experimental results, which are given in Section 3.

2. Test Methods and Materials

Concrete specimens were prepared from average 
strength concrete class C30/37. According to selected 
concrete class, concrete mix was designed with W/C ratio 
0.48.

According to this concrete mix composition, steel 
fibre reinforced concrete and steel fibre and ordinary 
reinforcement reinforced concrete elements were made, 
using steel fibre packets with hooked ends. Fibres are 
not high class because fibre length is 55 mm. Length and 
diameter ratio does not exceed 60, and anchorage parts do 
not make sufficient bond with concrete. During experiment 
content of fibres was changed only, when components of 
concrete mix were constant.

To determine concrete strength of made specimens, 
70 x 70 x 70 mm concrete cubes were formed. Specimens 
were hardened in ~20 °C temperature water for 28 days. In 
parallel, during making of each beam, 3 cubes were made to 
determine concrete compressive strength.

For bending tests 3 beams from each series were made. 
In first stage, 3 reinforced concrete beams without fibres were 
made, which were reinforced with S 400 class, 6 mm diameter 
plain reinforcement. In second stage analogical beams were 
made (3 units of each), which were reinforced with S 400 
class, 6 mm diameter plain reinforcement, by adding to beams 
respectively 20 kg/m3, 35 kg/m3 and 50 kg/m3 steel fibre. Total, 
12 beams were made 100 x 100 x 400 mm. As well as cubes, 
beams were hardened for 28 days, and kept in +18 – + 20 °C 
temperature water. After 28 days, beams were taken from 
water, dried and tested according to Germany standardized 
testing method DIN 1045-1.

Beams were loaded with two concentrated forces, 
one-third of the span length from the supports (according 
to scheme given in Fig. 1 and 2). Loading was performed 
according to deformations, i.e. the force was added so that 

the velocity of press cylinder would be 0.2  mm/min (DIN 
1045-1). Thus, during the test, two gauges were used, which 
precision was 0.001 mm. First – was used to control the 
velocity of press cylinder (number 1 in Fig. 2), second – to 
determine the element deflection (number 2 in Fig. 2). In 
order to determine deflection in the middle of the element, 
holder was fixed in the supporting sections, which does 
not deform in the middle of the element with respect to the 
supports. Other holder of deformations gauges was fixed in 
the middle of the element. When the beam starts to bend, 
second holder moves down together with beam, recording 
the size of deflection with respect to the first holder. 

Fig. 1. The scheme of test

Fig. 2. The specimen prepared to test. View from both sides. 
(1 – gauge to control load velocity, 2 – gauge for deflection 
measurement)

3. Test Results

First of all, compression strength of concrete was 
determined. As mentioned in introduction, 70  x  70  x  70 mm 
cubes were tested, and obtained strengths were 
recalculated according to the strengths of standard cubes 
150  x  150  x  150  mm. Total, 3 specimens were made from 
each composition of concrete. Obtained values are given in 
table 1. 
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Table 1. Concrete strengths

No. Content of 
fibre

Concrete strengths, MPa Average 
strength, 

MPaI II III

1 – 37,25 36,76 34,58 36,20
2 20 kg/m3 33,8 32,67 31,61 32,69
3 35 kg/m3 35,13 33,84 36,33 35,10
4 50 kg/m3 36,98 37,33 38,58 37,63

As shown in Fig. 3, amount of fibre slightly reduced 
compression strength of concrete, and only sufficiently large 
fibre amount (50 kg/m3), positively influenced compression 
strength. 

Fig 3. The relationship between amount of fibres and compression 
strength of concrete

As mentioned above, testing efficiency of steel fibre in 
reinforced concrete element, 4 series with 3 specimens were 
tested, when amount of steel fibre was changed. Test results 
are given in Fig. 4 and Fig. 5.

Fig 4. The relationship of load and press cylinder displacement

Fig 5. The relationship of load and specimen deflection 

4. Calculation of Fibre Residual Stress

Assuming that anchorage length of reinforcement is 
same in concrete and in steel fibre reinforced concrete we 
can accept that when identical crack widths exist, stresses 
in reinforcement are the same in reinforced concrete and in 
steel fibre and ordinary reinforcement reinforced concrete 
elements. 

Certainly, in this case, identical crack width will be 
achieved with different bending moments (in element with 
steel fibre, it will be achieved at larger bending moment). 
Thus, it can be stated that, at the identical crack widths, 
stresses in reinforcement will be the same, as well as the 
same force in reinforcement bondsF , . 

When there is sufficient bond between reinforcement 
and concrete, above mentioned value can be calculated 
according to scheme, given in Fig. 6: 
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However, when there is a limited bond between 
reinforcement and concrete, relationship between 
reinforcement and concrete strains can be different, 
depending on the size of stresses. 

Taking into account that crack width has linear 
correlation with deflection, then force, determined by 
testing reinforced concrete element at the deflection 
increment crcf∆  (Fig. 7), would be the same as in steel fibre 
and ordinary reinforcement reinforced concrete element, i.e. 
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that deflection from elastic strain will be differ also, i.e. 
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Fig. 7. The calculation scheme of crcf∆ and elf

In this case there the elastic modulus of concrete and 
fibre reinforced concrete assumed as equal to cE . After 
reviewing such assumptions and calculation principles the 
force bondsF ,  could be find out according to relationship 
of deflection and force F of element with ordinary 
reinforcement only (Fig. 8). 

Fig. 8. The relationship of force and deflection of element with 
ordinary reinforcement only
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or deflection increment crcf∆ . Of course, for it calculation 
more practically to use the relationship fF bonds –, , than 

crcbonds fF ∆–, , because in such way we would escape the 
additional calculation of crcf∆ . On analysis of these two 
relationships we can see that bondsF ,  depends on crcf∆  and 
f  (when crack is appeared) very similar (Fig. 10). So, in this 
way we could take into account the relationship fF bonds –,
without significant calculation error. 

Fig. 10. The relationship of element ordinary reinforcement bond 
force bondsF ,  and deflection f and deflection increment crcf∆

Practically, the relationship fF bonds –,  could be 
expressed as polynomial function (Fig. 11). For more 
accuracy there were expressed two functions:
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From equation (15) we can get the height of 

compression zone and from equation (13) – the average 

residual stress. After solving such stress for elements with 

differ amount of fibres the relationships of 
f

σ  and 

deflections are presented in Fig. 13.  
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In such case the average residual stress could be 

obtained from equations systems: 
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Fig 12. The scheme for calculation of average residual stress 

 

From the second equations of equations system 
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 and in consider to equilibrium equation of horizontal forces 

we can write 
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So, we get another cube equation that could be 

rewritten as 
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From equation (15) we can get the height of 

compression zone and from equation (13) – the average 

residual stress. After solving such stress for elements with 

differ amount of fibres the relationships of 
f

σ  and 

deflections are presented in Fig. 13.  

 

 (15)

From equation (15) we can get the height of compression 
zone and from equation (13) – the average residual stress. 
After solving such stress for elements with differ amount of 
fibres the relationships of fσ  and deflections are presented 
in Fig. 13. 

Fig. 13. The relationship of average residual stress and deflections 
of elements with different amount of fibres

Fig. 12.
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In Fig. 13 we can see that at the range of deflection 
from 0.18 to 0.52 and from 0.73 to 2.0 the average residual 
stress of element with 20 kg fibres is obtained as negative. 
This is because of reason that at these ranges for element 
with 20 kg fibres the force that correspond the displacement 
velocity of press cylinder was less than the same force for 
element without any fibres. In this case we can to describe 
that quite small amount of fibres could decrease the strength 
properties of element.

The relationship of fσ  and f  expressed as polynomial 
function is presented in Fig. 14.

Fig. 14. The relationship of average residual stress and deflections 
expressed as polynomial function

5. Conclusions

1. At the limit bond between ordinary reinforcement 
and concrete the residual stress could be calculated 
according to relationship of reinforcement force and 
curvature of cracked element middle section if to apply the 
assumption that at the same cracked section curvature the 
reinforcement force remains also the same independently on 
amount of fibre.

2. The reinforcement force can be obtained from 
experimental test of specimens with ordinary reinforcement 
only. In this case the curvature at the cracked section can 
be calculated according to deflection increment from crack 
appearing. It can be obtained from difference between total 
deflection and deflection of elastic strain.

3. According to relationship of calculated residual 
stress of tensile fibre and deflection the element resistance 
can be obtained at each deflection value, so it is possible to 
obtain the relationship of resistance and deflection
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