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Introduction

The method for determining the internal forces in longitudinal sections of the pipe wall based on the 
numerical analysis method has been proposed. The two-dimensional finite-element model simulating 
the annular section of the pipe and surrounding soil body are used. The external loads are presented 
as vertical pressures applied at the level of the pipe top +0.5 m. The calculation is performed by the 
iterative method with the account of the deformation parameters of the elements. The computation 
results conform well with the experimental data.
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One of the main problems arising when computing and designing the reinforced-concrete pipes 
for buried pipelines consists in determining the internal forces (bending moments) occurring in 
longitudinal sections of the pipe walls under the action of external loads. Here the maximum 
values of the bending moments depend not only on the external loads, but also on the geotechnical 
conditions of lying the pipes. 

The valid regulatory system of the CIS countries contains only the technique provided in the 
Construction Norms and Regulations (SNiP) 2.05.03-85(ЦИТП Госстроя СССР, 1985), according 
to which the loads and internal forces in the pipes to be laid in the road bodies. The main scope of 
application of reinforced-concrete pipes is construction of the water-supply and sewage pipelines, 
where the pipes are laid in trenches and their stressed-deformed state differs considerably from 
that of the pipes laid in the road body.

In 1975, the project “Instruction for Determining the Loads upon the Buried Pipelines” (СН00075) 
based on the use of semi-empirical dependencies obtained by G.K.Klein (Клейн Г.К. 1968) was 
developed in the USSR. However, this instruction was neither approved nor published. The 
GOST 6482-88 (Издательство стандартов, 1989), where the drawings of pipes (including the 
reinforcement) and design conditions of their laying were provided, was valid in the USSR and 
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Russia till recently. This solved the problem of absence of a normative document for computing 
and designing the pipes, but constrained the development of their new engineering solutions and 
efficient manufacturing technologies. 

The investigation is aimed at the development of the technique of computing the reinforced-
concrete pipes laid in the soil based on the use of the computer-generated simulation.

The geometrical dimensions of the reinforced-concrete pipes (diameter/length) are those that 
the pipes laid in the soil may be considered as annular elements being in the planar-deformation 
conditions. In the SNiP 2.5.03-85, the computational pattern presented in Fig. 1 is used for 
determining the bending moments in longitudinal sections of the pipe wall.

The bending moments М1, М2, М3, are determined from the formulae: 

Methods

where: 

d is the coefficient taking into account 
the section position, bed type and 
angle of contact of the pipe in the bed;

rm and b are the average pipe radius 
and design section width, respectively;

λ is the lateral soil pressure coefficient.

(1)

(2)

М1,2,3 = d · (pν - pn ) × rm
2 · b;       

                                                      or

М1,2,3 = d · pν (1- λ ) × rm
2 · b;

As seen from (1)-(2), the value of 
the bending moments М1, М2, М3 is 
affected considerably by the “passive” 
lateral soil pressure pn, which depends 
on the type of the soil and degree 
of its compaction. In the project 
СН00075, this factor was taken into 
consideration by applying the three 
degrees of compaction of the soil in 
the gaps between the pipes and the 
trench walls (in the pipeline project): 
the uncontrolled, increased and dense 
one (compaction by alluvion), to each 
of which a certain value of the lateral 
pressure coefficient for the given kind 
of soil λ corresponded.

Besides, the computational pattern 
(see Fig.1) does not take into account 
the occurrence of the additional 
“reactive” lateral soil pressure when 
increasing the horizontal diameter 
(warping of the annular section of 
the pipe) during the formation of the 
cracks in the “dangerous” sections of 
the pipe wall.

This problem can be solved using 
the method of computer-generated 

Fig. 1
Computational pattern 

and distribution diagram 
of the bending moments 

in longitudinal sections of 
the pipe wall
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Fig. 2
Computational finite-

element model  
of the pipe 

λ is the lateral soil pressure coefficient. 

As seen from (1)-(2), the value of the bending 
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СН00075, this factor was taken into consideration by 

applying the three degrees of compaction of the soil in the 
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(compaction by alluvion), to each of which a certain value 

of the lateral pressure coefficient for the given kind of soil λ 
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Besides, the computational pattern (see Fig.1) does not 

take into account the occurrence of the additional “reactive” 
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elements 2 (with the compressive stiffness only); 

- the soil for filling the gaps between the pipes and the 

trench walls is formed by flat rectangular and triangular (in 

the contact zones) soil elements 3 having its own weight; 

- the modulus of deformation of the soil elements is 

adopted depending on the degree of compaction of the 

filling soil (coefficient K
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flat rectangular and triangular (in the zone of contact with 

the filling soil) soil elements 4, the modulus of deformation 
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- the zone of contact of the filling soil with the soil of 

undisturbed structure is formed by special contact elements 

with finite shear modulus simulating the friction of the 
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- the external load on the pipe (to be determined using 

the technique provided in the SNiP 2.05.03-85) is applied as 
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  Fig. 2. Computational finite-element model of the pipe 

1 – rod-shaped elements of the pipe wall; 2 – contact elements;  3 

– flat elements of the filling soil; 4 – flat elements of the natural 

soil; 5 – zones of additional compaction of the filling soil;  6 – 

zone of additional compaction of the bed soil. 
For solving this problem, the computational software 

packages, such as “LYRE”, “NASTRAN”, etc. taking into 

account the physical and geometrical non-linearity can be 

used (Городецкий А.С., Евзеров И.Д. 2009). 

When describing the finite elements, the following is 

assumed: 

- modulus of deformation of the soil: E
soil

= 50 MPa – 

for simulating the soil of the undisturbed structure and 

E
soil

=5 MPa (15; 25 MPa) – for the filling soil; 

- Poisson ratio ν = 0.3; 

- cohesion R
c
=22 kPa – for simulating the soil of the 

undisturbed structure and R
c
=1…5 kPa – for simulating the 

backfilling soil; 

- soil density ρ = 17.7 kN/m
3

; 

- angle of internal friction φ = 30°; 

- geometrical parameters B and H; 

- diagrams of the material deformation. 

The computation is performed using the iterative 

method, by the step-by-step application of the external load 

(at least 10 stages). At each loading stage, the change in the 

stiffness of the rod-shaped finite elements of the pipe wall in 

the cracking zones as well as change in the deformation 

module of the filling soil in the additional compaction zones 

5 and 6. 

This computation method makes it possible to 

determine the values of the internal forces of the bending 

moments in the rod-shaped elements simulating the pipe 

wall as well as the values of warping of the annular section 

of the pipe (changes in the vertical and horizontal diameter). 

3. Results 

Figures 3-6 present the graphical dependencies of the 

bending moment values М
max

, in the walls of pipes Ø1000 

mm and 2000 mm and values of changes in the horizontal 

pipe diameter Δ on the filling height Н (to be used for 

computing the p
v
 and p

γ
). The modulus of deformation of 

the soil filling the gaps between the pipes and the trench 

walls Е
soil

. is assumed to be 5; 15; 25 MPa (averaged values 

from Project СН00075), to which various extent of its 

compaction (uncontrolled, increased and dense) 

corresponds).  

 

1 – rod-shaped elements of the pipe wall; 2 – contact elements;  
3 – flat elements of the filling soil; 4 – flat elements of the 
natural soil; 5 – zones of additional compaction of the filling soil;  
6 – zone of additional compaction of the bed soil
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simulation. To solve this problem, the two-dimensional finite-element model (see Fig. 2) is used. 
This model is formed as follows:

 _ the annular section of the pipe (of a single width) is formed by the rectilinear rod-shaped 
finite elements 1 conjugated rigidly with one another and  arranged over the perimeter of 
the middle surface of the pipe;

 _ the length of the rod-shaped elements (l0) is assumed to be 0.03…0.05 of the length of the 
circumference of the medial surface and their modulus of elasticity (Е) according to the 
deformation curve for concrete of the specified strength class;

 _ the zone of contact between the pipe elements and the soil body is formed by the grid of 
rod-shaped contact elements 2 (with the compressive stiffness only);

 _ the soil for filling the gaps between the pipes and the trench walls is formed by flat rectangular 
and triangular (in the contact zones) soil elements 3 having its own weight;

 _ the modulus of deformation of the soil elements is adopted depending on the degree of 
compaction of the filling soil (coefficient Ky): 5 MPa for normal (uncontrolled) compaction 
degree; 15 MPa – for increased (up to 0.93 < Ky < 0.95) compaction degree; 25 MPa – for high 
(up to Ky > 0.95) compaction degree.

 _ the soil outside the trench (natural) is formed by the flat rectangular and triangular (in the 
zone of contact with the filling soil) soil elements 4, the modulus of deformation of which 
is to be assumed depending on the kind of the soil of the natural (undisturbed) structure 
surrounding the trench;

 _ the zone of contact of the filling soil with the soil of undisturbed structure is formed by 
special contact elements with finite shear modulus simulating the friction of the filling soil 
on the natural soil;

 _ the external load on the pipe (to be determined using the technique provided in the SNiP 
2.05.03-85) is applied as uniform vertical pressures pv and pγ, applied at the level of the pipe 
top +0.5 m,

where pv and pγ, are the total vertical pressure (including the variable load on the surface) and 
the pressure from the filling soil, respectively, computed on the basis of the existing techniques.

The boundaries of the computational domain are assumed depending on the outer diameter of 
the pipe De for the purpose of excluding the effect of the external loop on the computation results.  
For solving this problem, the computational software packages, such as “LYRE”, “NASTRAN”, etc. 
taking into account the physical and geometrical non-linearity can be used (Городецкий А.С., 
Евзеров И.Д. 2009).

When describing the finite elements, the following is assumed:

 _ modulus of deformation of the soil: Esoil= 50 MPa – for simulating the soil of the undisturbed 
structure and Esoil=5 MPa (15; 25 MPa) – for the filling soil;

 _ Poisson ratio ν = 0.3;

 _ cohesion Rc=22 kPa – for simulating the soil of the undisturbed structure and Rc=1…5 kPa – 
for simulating the backfilling soil;

 _ soil density ρ = 17.7 kN/m3;

 _ angle of internal friction φ = 30°;

 _ geometrical parameters B and H;

 _ diagrams of the material deformation.

The computation is performed using the iterative method, by the step-by-step application of the 
external load (at least 10 stages). At each loading stage, the change in the stiffness of the rod-
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shaped finite elements of the pipe wall in the cracking zones as well as change in the deformation 
module of the filling soil in the additional compaction zones 5 and 6.

This computation method makes it possible to determine the values of the internal forces of the 
bending moments in the rod-shaped elements simulating the pipe wall as well as the values of 
warping of the annular section of the pipe (changes in the vertical and horizontal diameter).

Figures 3-6 present the graphical 
dependencies of the bending moment 
values Мmax, in the walls of pipes 
Ø1000 mm and 2000 mm and values 
of changes in the horizontal pipe 
diameter Δ on the filling height Н (to 
be used for computing the pv and pγ). 
The modulus of deformation of the soil 
filling the gaps between the pipes and 
the trench walls Еsoil. is assumed to be 
5; 15; 25 MPa (averaged values from 
Project СН00075), to which various 
extent of its compaction (uncontrolled, 
increased and dense) corresponds). 

As seen from the graphs, the increase 
of the modulus of deformation of the 
soil filling the gaps between the pipes 
and the trench walls (for example, by 
using the sandy soil with steeping and 
layer-by-layer compaction) leads to 
the reduction of the maximum bending 
moments in the unsafe sections of the 
pipe wall by 20…35%, depending on 
the geometrical parameters of the 
pipes and depth of their burial. Here 
the warping of the annular section of 
the pipe (Δ) is reduced by 1.5...2. 

This phenomenon is conditioned by 
the action of the lateral soil pressure 
occurring as a reaction to warping of 
the annular section (Δ). Here no lateral 
pressure (pn) (see the diagram in Fig. 1) 
was applied explicitly to the pipe.

It is obvious that the value of the 
reactive lateral soil pressure depends 
on the stiffness of the annular section 
of the pipe. In the reinforced-concrete 
pipes, the stiffness of the annular 
section decreases considerably in the 
process of formation and opening of 
the cracks. The cracks are formed in 
the longitudinal sections of the pipe 
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Fig. 6. Δ vs. Н dependence for the 2000 mm diameter pipes 

As seen from the graphs, the increase of the modulus 

of deformation of the soil filling the gaps between the pipes 

and the trench walls (for example, by using the sandy soil 

with steeping and layer-by-layer compaction) leads to the 

reduction of the maximum bending moments in the unsafe 

sections of the pipe wall by 20…35%, depending on the 

geometrical parameters of the pipes and depth of their 

burial. Here the warping of the annular section of the pipe 

(Δ) is reduced by 1.5...2.  

This phenomenon is conditioned by the action of the 

lateral soil pressure occurring as a reaction to warping of the 

annular section (Δ). Here no lateral pressure (p
n
) (see the 

diagram in Fig. 1) was applied explicitly to the pipe. 

It is obvious that the value of the reactive lateral soil 

pressure depends on the stiffness of the annular section of 

the pipe. In the reinforced-concrete pipes, the stiffness of the 

annular section decreases considerably in the process of 

formation and opening of the cracks. The cracks are formed 

in the longitudinal sections of the pipe wall in the zones of 

action of the maximum bending moments (see the 

distribution diagram М in Fig. 1). To reveal the influence of 

this factor on the stressed-deformed state of the pipes, their 

computation without accounting this phenomena was 

performed. 

 Tables 1-2 presents the comparative values of the 

maximum bending moment М
max

 and warping of the 

annular section Δ for the 1000 and 2000 mm diameter pipes 

with the modulus of deformation of the filling soil E
soil

=15 

MPa obtained from the  linear-elastic and iterative 

computations. 

Table 1. The comparative values of the maximum bending 

moment М
max

 and warping of the annular section Δ 

H,  

m 

М
max

, kNm/m 

 

Δ, mm 

Iterative  

Linear-

elastic  

Iterative  Linear-

elastic  

2 4.39 4.54 0.33 0.27 

3 5.46 5.74 0.44 0.34 

4 6.74 7.22 0.6 0.42 

5 7.81 8.52 0.78 0.5 

6 8.97 9.86 1.03 0.57 

7 10.1 11.2 1.33 0.65 

8 11.1 12.6 1.66 0.73 

9 12.1 14.2 2.27 0.83 

10 12.6 15.7 3.07 0.91 
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As seen from the graphs, the increase of the modulus 

of deformation of the soil filling the gaps between the pipes 

and the trench walls (for example, by using the sandy soil 

with steeping and layer-by-layer compaction) leads to the 

reduction of the maximum bending moments in the unsafe 

sections of the pipe wall by 20…35%, depending on the 

geometrical parameters of the pipes and depth of their 

burial. Here the warping of the annular section of the pipe 

(Δ) is reduced by 1.5...2.  

This phenomenon is conditioned by the action of the 

lateral soil pressure occurring as a reaction to warping of the 

annular section (Δ). Here no lateral pressure (p
n
) (see the 

diagram in Fig. 1) was applied explicitly to the pipe. 

It is obvious that the value of the reactive lateral soil 

pressure depends on the stiffness of the annular section of 

the pipe. In the reinforced-concrete pipes, the stiffness of the 

annular section decreases considerably in the process of 

formation and opening of the cracks. The cracks are formed 

in the longitudinal sections of the pipe wall in the zones of 

action of the maximum bending moments (see the 

distribution diagram М in Fig. 1). To reveal the influence of 

this factor on the stressed-deformed state of the pipes, their 

computation without accounting this phenomena was 

performed. 

 Tables 1-2 presents the comparative values of the 
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max

 and warping of the 
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10 12.6 15.7 3.07 0.91 
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wall in the zones of action of the 
maximum bending moments (see the 
distribution diagram М in Fig. 1). To 
reveal the influence of this factor on the 
stressed-deformed state of the pipes, 
their computation without accounting 
this phenomena was performed.

Tables 1-2 presents the comparative 
values of the maximum bending 
moment Мmax and warping of the 
annular section Δ for the 1000 and 2000 
mm diameter pipes with the modulus 
of deformation of the filling soil Esoil=15 
MPa obtained from the  linear-elastic 
and iterative computations.

As the load grows (the filling height Н 
increases), the results of computation 
of the pipes using the linear-elastic and 
iterative model become considerably 
different so that the heavier is the 
load, the greater are the differences 
between the results. 

This phenomenon is conditioned by 
the fact that as the cracks occur in the  
“unsafe” sections of the pipe wall (bot-
tom line, soffit and at the horizontal 
diameter level), the warping of the an-
nular section grows. The additional (re-
active) lateral back pressure of the soil 
filling the gaps between the pipes and 
the trench walls that just causes the re-
duction of the bending moments Мmax..

The most significant occurrence of 
this phenomenon takes place in 
the large-diameter pipes having 
lesser annular stiffness. So in the 
pipe with the diameter of 2000 mm 
at the filling height Н=10 m, the 
computed value of Мmax was reduced 
by 34% in comparison with the elastic 
computation.

To check the adequacy of the proposed 
computational model, the comparison 
of the computed values of warping 
of the annular section D of the pipes 
with the diameter of 2000 mm with the 
results of their measurements was 
performed. These pipes were used in 
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As seen from the graphs, the increase of the modulus 

of deformation of the soil filling the gaps between the pipes 

and the trench walls (for example, by using the sandy soil 
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Table 1
The comparative 
values of the maximum 
bending moment Мmax 
and warping of the 
annular section Δ

Table 2
The comparative values 
of the maximum bending 
moment Мmax and warping 
of the annular section Δ

H, 
m

Мmax, kNm/m Δ, mm

Iterative 
Linear-
elastic 

Iterative 
Linear-
elastic 

2 13.69 16.0 1.90 1.30

3 17.70 20.7 2.66 1.83

4 21.38 25.8 3.54 2.20

5 25.07 31.1 4.49 2.60

6 28.62 36.5 5.56 3.10

7 31.82 42.0 6.72 3.53

8 34.68 47.5 8.07 3.92

9 36.54 53.8 9.89 4.50

10 38.24 58.6 11.81 4.90
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construction of storm drains in the city of 
Minsk, their depth was from 2 to 7.5 m.

Basic parameters of the pipes:

 _ inner diameter – 2000 mm;

 _ useful length (without the hub) - 
2,5 m;

 _ type of pipe connection joint – 
hub with rubber sealing;

 _ pipe wall thickness - 150 mm;

 _ pipe wall is reinforced with double 
cylindrical hulls symmetrically 
placed at inner and outer faces;

 _ design concrete class – С25/30.

Design solution of pipe is shown in Fig. 7.

Designers of these pipes (including 
authors of this article) were monitoring 
the technical condition of the pipes 
both immediately after filling as well as 
during the operation process. Degree 
of the pipe loading was determined by 
measuring changes of its horizontal 
diameter, and by presence of cracks in 
the crown and their opening width.

Fig. 8 presents the graphical 
dependencies (obtained by processing 
the results of pipe measurements 
after backfilling) of changes of the 

Table 2. the comparative values of the maximum bending 

moment М
max

 and warping of the annular section Δ 
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As the load grows (the filling height Н increases), the 

results of computation of the pipes using the linear-elastic 

and iterative model become considerably different so that 

the heavier is the load, the greater are the differences 

between the results.  

This phenomenon is conditioned by the fact that as the 

cracks occur in the “unsafe” sections of the pipe wall 

(bottom line, soffit and at the horizontal diameter level), the 

warping of the annular section grows. The additional 

(reactive) lateral back pressure of the soil filling the gaps 

between the pipes and the trench walls that just causes the 

reduction of the bending moments М
max.

. 

The most significant occurrence of this phenomenon 

takes place in the large-diameter pipes having lesser annular 

stiffness. So in the pipe with the diameter of 2000 mm at the 

filling height Н=10 m, the computed value of М
max

 was 

reduced by 34% in comparison with the elastic computation. 

To check the adequacy of the proposed computational 

model, the comparison of the computed values of warping 

of the annular section Δ of the pipes with the diameter of 

2000 mm with the results of their measurements was 

performed. These pipes were used in construction of storm 

drains in the city of Minsk, their depth was from 2 to 7.5 m. 
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- pipe wall is reinforced with double cylindrical hulls 

symmetrically placed at inner and outer faces; 

- design concrete class – С25/30. 

Design solution of pipe is shown in Fig. 7. 
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1 – external cylindrical hull; 2 – internal cylindrical hull

Thus, the technique for computing the buried pipelines made of reinforced-concrete pipes by the 
numerical simulation method using the finite-element model conforms well with the similar results 
of the computation according to Project СН 00075 and corresponds to the experimental data. 

The advantage of the technique being proposed consists in the possibility of simulation of various 
geotechnical conditions of lying the pipes (in an embankment, trench, slit, etc.) as well as degree 
of compaction of the surrounding soil. In so doing, the computations take into account the change 
in the stiffness of the annular section of the pipe in the process of formation and opening of cracks. 

The proposed technique can be recommended for computing and designing the buried pipelines 
made of reinforced-concrete pipes. 

Conclusions
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